Design of Acid Mine Drainage Collection and Treatment Facilities at the Brewer Gold Mine Site

Ed Hicks PE, PMP – Project Manager
Courtney Collins PE – Process Engineer
Tom Moyer PhD, PG – Senior Scientist
OVERVIEW

1. SITE AND PROJECT BACKGROUND

2. DESIGN GOALS AND OBJECTIVES

3. DESIGN ASPECTS AND FEATURES
Project Background

• Former Brewer Gold Mine in Jefferson, South Carolina. Operated Intermittently from 1828-1995
• Mercury Amalgamation and Cyanide Heap Leaching
• 230 Acres Disturbed by Mining, >1,000 Acres total
• 1993-95 Closure, Reclamation, Temporary WW Treatment Plant (magnesium Hydroxide Neutralization/Precipitation)
• 1999 EPA Assumed Responsibility and O&M of WWTP (GW and Surface Water)
• 2000 WWT Process Changed to Lime Neutralization/Precip.
• 2005 Site Added to NPL, B&V tasked to assume O&M, conduct RI, FS
Project Background (Cont.)

- EPA operating aging “Temporary System” since 1995
- 2014 - BV issued RD to Design New System
- Components Included:
 - Cap the 50-acre former waste rock disposal area
 - Improvements to AMD collection / conveyance Systems
 - Design new 56 MG annual capacity lime treatment plant
 - Effluent polishing to treat selenium
 - Sludge dewatering process modifications
- Objective is to protect surface water
Multi-Faceted Design

Design Goals and Objectives

- Reduce volume of mine-impacted water to be treated (80MG to 56MG)
- Flexible and automated water collection/treatment process
- High Reliability
- Reduce O&M requirements
- Incorporate Performance Based Contracting (PBC) for specialized process components (Selenium, Polymer, Anti Scaling)
- Potential Re-Use and/or Reclamation of Sludge
Design Goals and Objectives (Continued)

WATER QUALITY

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Influent Concentration</th>
<th>Monthly Average Discharge Criteria (µg/L)</th>
<th>Daily Max Discharge Criteria (µg/L)</th>
</tr>
</thead>
<tbody>
<tr>
<td>pH</td>
<td>2.3</td>
<td>6.0-8.5</td>
<td>6.0-8.5</td>
</tr>
<tr>
<td>Aluminum (µg/L)</td>
<td>300,000</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Cadmium, total (µg/L)</td>
<td>7</td>
<td>2.0</td>
<td>10.7</td>
</tr>
<tr>
<td>Copper, total (µg/L)</td>
<td>25,000</td>
<td>34.1</td>
<td>44.6</td>
</tr>
<tr>
<td>Iron (µg/L)</td>
<td>550,000</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Manganese (µg/L)</td>
<td>3,600</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Nickel (µg/L)</td>
<td>300</td>
<td>150</td>
<td>1,408</td>
</tr>
<tr>
<td>Selenium, total (µg/L)</td>
<td>80</td>
<td>23.8</td>
<td>95.3</td>
</tr>
<tr>
<td>Sulfate (mg/L)</td>
<td>4,000</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>TDS (mg/L)</td>
<td>5,000</td>
<td>None</td>
<td>None</td>
</tr>
</tbody>
</table>
Reduce Volume of Mine-Impacted Water

- SW runoff from waste rock area is acidic (pH 3.5) - Requires Treatment
- Collected in pond beneath the area
- Contributes ~30% of the total mine-impacted water for treatment
- Install vegetated cap to eliminate this WW Source
Earthen Vegetated Cap and Drainage Improvements - Design

- Earthen Cap – 50/50 blend of onsite borrow with dried alkali sludge from existing wastewater treatment process
- Drainage channels (100 yr)
- Apply Ag Lime beneath cap to neutralize acidity
- Testing/Monitoring Program
- Challenges:
 - Sheer rock slopes
 - Vegetation Establishment
Flexible & Automated Water Treatment Process

• Semi-continuous operation
• High density lime slurry to reduce scaling & maintenance
• Online water quality instrumentation & controls for automated chemical dosing
• Temporary holding basins for phased treatment
• Reduces operator involvement
High Reliability

• Stayed with Hydrated Lime for primary Neutralization/Precipitation Process
• Redundant Primary Process (2 Parallel Treatment Trains)
• Redundant Pumps throughout
• Backup Power Supply for Seep Collection/Lift Stations and EW
Reduce O&M Requirements
Current Sludge Drying Process Labor Intensive

- Pumped via Dredge from Settling Pit to Drying Pads
- Precipitated hydroxide sludge is fine-grained and holds water
- Sludge “stirred” and air dried
- Long drying times, rain impacts drying time (>50” per year)
- Current process requires significant operator involvement

Current sludge dewatering/drying method
Proposed Sludge Dewatering Process

- Sludge automatically pumped from clarifiers to Lined Settling Basin
- Sludge pumped from basin to geotextile dewatering tubes at operator’s convenience
- Inline addition of polymer coagulant
- Drying time unaffected by rain

Geotextile fabric filter tube dewatering reduces O&M
Incorporating PBC Into Design (Selenium)

• Multiple Competing Technologies and approaches (proprietary, unreliable cost and performance data)

• Bench and Pilot Studies Preferred – BV selected one for Bench, will provide report to bidders

• System and performance criteria incorporated in Engineering Design Specifications
 • Specifies Influent Water Quality and Discharge Requirements
 • Specifies opportunity for treatability and/or pilot testing
 • Provides chemical data from existing system and jar tests
 • Specifies PBC contractor design, procure, install, & commission equipment, and prove-out period for full operation
FS versus RD Cost Estimates

RD Estimated Cost ~ 3 Times Higher Than FS

Factors
- Redundancy, Extra Water Storage Basins, Back up Power Supplies, Input from Stakeholders (State), More existing Comp. Required Replacement than Anticipated
- Selenium Treatment Requirements / Processes / Costs not well understood at the time
- Complex Systems - Inadequate Conceptual Design During FS

Lessons Learned
- Complex Systems - Involve more key stakeholders in conceptual design development, including O&M staff if available during the FS
- Provide more detailed conceptual design during the FS
- Include more contingency for uncertainty related to treating emerging COC’s
Design of Acid Mine Drainage Collection and Treatment Facilities at the Brewer Gold Mine Site

THANK YOU

Ed Hicks PE, PMP – Project Manager
Courtney Collins PE – Process Engineer
Tom Moyer PhD, PG – Senior Scientist

2017 Design and Construction Issues at Hazardous Waste Sites