Developing Microgrids and Integrating with Energy Master Planning
Microgrid 101

One Definition
Two Types of Microgrids
Three Key Components
Four Major Benefits
One Definition

- A **microgrid** is an integrated energy system consisting of both energy generating and consuming systems.

- Capable of operating with or without the main utility grid and is intelligently controlled.
What is a Microgrid?

Two Types of Microgrids:

- **Full Isolation (Island)**
 - Uses local energy generation resources and controls to meet the full energy demand of all connected loads and is capable of isolating from the utility grid at any time.
 - Useful when the electrical utility is unreliable, there are major utility cost fluctuations, or when downtime is not an option.

- **Partial Isolation (Emergency)**
 - Uses local energy generation resources and demand reduction controls to isolate from the grid during outages.
 - Controls isolate non-critical facilities and manage connected loads to reduce overall demand on local generation capacity.
 - This arrangement is for a microgrid that has mission critical loads but the cost to provide a full isolation system is not warranted.
What is a Microgrid?

Three **Key Components**

- **Distributed Generation**
 - Improves reliability by utilizing multiple generation sources to remove the single point of failure arrangement
 - Improves overall efficiency and economics through the diversification of energy sources and the ability to better deploy renewable energy.

- **Sectionalizing Switches and Relay Protection**
 - Designed to isolate and recover from disturbances and keep the grid operational.

- **System Intelligence**
 - Centralized SCADA system to monitor and control grid.
 - Enterprise level integrated supply and demand control (SCADA and Building Automation Systems).
What is a Microgrid?

Four Major Benefits

• **Resiliency**
 » In order to meet the mission, an extended power outage is no longer acceptable. A microgrid enhances utility systems to achieve nearly 100% uptime operation.

• **Increased use of renewables and improved efficiency**
 » Use of cogeneration, and renewables can provide alternative fuel options and reduce GHG.

• **Energy Security**
 » Reduce exposure to outside threats (natural disasters, cyber attacks, physical attacks, etc..) by limiting the reliance on outside utility systems and improving the infrastructure.

• **Future Proofing**
 » A robust infrastructure that is developed and planned as part of a microgrid can accommodate future growth and incorporate new energy technologies.
Microgrid - Distributed Generation

- **Power Generation**
 - Cogeneration
 - Produces heat and power
 - Turbine or reciprocating engine
 - Base for grid isolation
 - Emergency Generators

- **Energy Storage**
 - Thermal Storage
 - Electrical Storage
 - Battery or Flywheel

- **Renewable Energy**
 - Solar Photovoltaic
 - Wind Energy
Microgrid – Reliability & Redundancy

• Grid Isolation
 » Full Isolation/Partial Isolation and load shedding

• Self Healing Grid
 » Utilize intelligent control system, relays and sectionalizing switches to automatically detect and isolate faults

• Robust Infrastructure
 » Looped distribution system to allow for multiple feeds
 » N+1 redundancy on key pieces of equipment

• Diversified Generation
 » Multiple generation sources prevents a single point of failure
 » Utility/Generation/Cogeneration/Solar/Energy Storage/Wind
Nanogrids Anyone?

District Energy for Electricity

A robust infrastructure that can prevent power outages in critical facilities by providing continuous power with the reliability of having multiple generators/UPS systems interconnected.
Nanogrid Concept
<table>
<thead>
<tr>
<th>Individual Generators</th>
<th>Nanogrid</th>
</tr>
</thead>
<tbody>
<tr>
<td>Period of Full Blackout During an Outage</td>
<td>10 Seconds</td>
</tr>
<tr>
<td>Supports Additional Non-Critical Loads</td>
<td>No</td>
</tr>
</tbody>
</table>
A Smart Campus: Stepping Beyond a Microgrid

Intelligent, two way communications and control between energy producing and consuming equipment.

- Distributed Generation
 - Solar PV and thermal
 - Wind and steam turbine
 - Generators

- Energy Storage
 - Flywheel
 - Battery storage
 - Thermal storage

- Central Utility Plant
 - Boilers and chillers
 - Cogeneration
 - Optimized control load

- Electrical Infrastructure
 - High-speed switching
 - Fault indicators
 - Substation integration

- Exterior Variables
 - Utility company
 - Weather forecast

- Microgrid
 - Resiliency
 - Integrated supply and demand
 - Efficiency

- Buildings
 - Building automation system integrated with smart grid
 - Energy optimization
 - Continuous commissioning
 - Demand response
A Smart Campus: Stepping Beyond a Microgrid

- Implement enterprise level control system to integrate central utility plants and buildings to create a holistic energy system
- Campus wide implementation increases savings ability
- Required capital is lowered by utilizing existing systems
- Projected to save approximately 5-15% of campus energy costs with a payback of less than 3 years

- Some features of a smart campus:
 » Smart Metering
 » Demand Response
 » Continuous Commissioning
 » Complete System Energy Optimization
 » Automated Set Point Control

5-15% REDUCTION IN CAMPUS ENERGY
Case Study:
Centennial Campus Smart Grid Master Plan
Centennial Campus Smart Grid Master Plan – Project Overview

• Project/Site Overview
 » Campus is approximately 1,000 acres and has approximately 2 million sf of building space

• Project Goals
 » Improve electrical infrastructure resiliency
 » Plan for incorporating smart grid research on campus
 » High level demand response
Centennial Campus Smart Grid Master Plan – Projects

- **Distributed Generation**
 - 5.7 MW Cogeneration
 - 4 million gallon Thermal Storage Tank
 - Solar PV

- **Resiliency**
 - Sectionalized Self-Healing Grid
 - Emergency Grid Isolation

- **Efficiency**
 - Intelligent Microgrid Control System
 - Projected to save over $1 million annually with a payback of approximately 3 years
Centennial Campus Smart Grid Master Plan – Project Implementation

- **Tier I**
 - Smart Campus
 - Redundant and Automated Substation
 - Self-Healing Grid

- **Tier II**
 - Cogeneration
 - Thermal Storage
 - Load Shed Generator
 - Smart Grid Proving Grounds

- **Tier III**
 - Fuel Cell
 - Micro Steam Turbine
 - Grid Isolation
 - Self – Regulating Grid
 - Solar PV

<table>
<thead>
<tr>
<th>Payback</th>
<th>Annual Savings</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.2 Year</td>
<td>$3,600,000</td>
</tr>
<tr>
<td>20 Year</td>
<td>$1,560,000</td>
</tr>
<tr>
<td>90 Year</td>
<td>$340,000</td>
</tr>
</tbody>
</table>
Smart Campus Control System

- Orchestrates the various smart grid components to work as one
- Provides a centralized location to view all the energy components on campus
- Develops an energy strategy for the campus

Diagram:
- Monitoring
- Modeling
- Optimizing
Smart Campus Control System

- Integrates with the existing control systems
- Provides one fluid system to analyze energy on numerous levels
- Cost and savings estimates are based on the full implementation

2.5 Year Payback

$970,000 Annual Savings

$2,450,000 Investment
Case Study:
NJ ANG Sea Girt Microgrid Feasibility Study
• **Project Overview**
 » Fully occupied training center with approximately 250,000ft\(^2\) of building space
 » Hit hard by Super Storm Sandy

• **Project Goals**
 » Evaluate the existing and future conditions
 » Identify system weaknesses and requirements for implementing a microgrid
 » Develop a prioritized list of projects and an implementation plan for a full microgrid
Sea Girt Microgrid Considerations

- **Electric Distribution System Upgrade** – SCADA controls and monitoring
- **Improve resiliency** by adding looped circuits and self-healing grid capabilities
- **Islanding capability** - disconnection from utility grid with additional distributed generation.
- **Battery Storage** – Extend generation capabilities and reduce peak demand
- **Smart Campus Integration** – integrate grid SCADA with building controls
Sea Girt Microgrid Study – Value Added

- Resiliency
- Reliability
- Energy Efficiency
- Currently developing funding through ECIP
- If funding is approved, the site will become the first DoD microgrid that can fully isolate
Microgrid Considerations During Energy Master Planning
Microgrid Considerations – Holistic Approach

- Identify Smart Campus Efficiency Options and impact on demand load
- Electrical vs. thermal loading
- Identify level of renewables
- Grid Stabilization
- Self-Generation/Fuel Diversity
Utility Master Planning Considerations

- Condition Assessment
- System Modeling
- Load Growth Projections
- Infrastructure Renewal
- Energy Efficiency Upgrades
- Self-Generation/Fuel Diversity
- Microgrid & power resiliency
- Environmental Strategies
- Plant Siting
- Reliability Improvements
- Economic Analysis
- Cost Estimating
- Funding/Phasing/Scheduling
Benefits of Energy and Utility Master Plans?

- Ensure Energy Systems Meet Mission Needs and Addresses Deferred Maintenance
- Improve Energy Reliability & Redundancy
- Strategic Approach to Reduce GHG Emissions & Operating Costs (Meeting Federal Energy Policy)
- Provides a Road Map that Optimizes Energy Efficiency and Defines Capital Requirements
Energy Master Plan Results

Road Map and Long Term Planning Tool

» Just in time delivery
 • Meet the utility demands as required to optimize capital expenditures

» Align with goals and strategies
 • Pathway to meeting energy reduction or GHG neutrality goals

» Respond to Planning Flux
 • Maintain relevance
 • Dynamic & Adaptive

» Sensitivity Tool
 • Understand the financial and energy impact of the decisions being made

» Fund future improvements through savings
Rick Bourn, PE, LEED AP
Principal – Energy & Power Solutions
Jacobs
Rick.Bourn@jacobs.com
Phone: 919-625-0906