Combined Technologies to Address Two Complex Chlorinated Hydrocarbon Sites at a Federal Facility

Monica L. Fulkerson, P.E., Design Manager
Agenda

• Provide facility background
• Present combined technology benefits
• Detail combined technology case studies
 • Selected remedies
 • Exit strategies
 • Ongoing optimizations
Facility Background

- Large federal facility in North Carolina active since 1940s
- CERCLA investigations and remediations underway since mid-1990s
- Nearly 50 active environmental sites
 - Chlorinated solvents
 - Munitions and unexploded ordnance
 - Emerging contaminants
Combined Technologies at Complex Sites

- Achieve distinct remedial objectives in different parts of target treatment area
- Account for varying site characteristics
- Provide flexibility with operations and maintenance
- Clear transition to monitored natural attenuation (MNA)
Combined Technologies: Case Studies

<table>
<thead>
<tr>
<th></th>
<th>Site #1</th>
<th>Site #2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Historical Operations</td>
<td>Former Dry Cleaning Facility</td>
<td>Former Motor Pool and Defense Reutilization and Marketing Office (DRMO)</td>
</tr>
<tr>
<td>Plume Extent</td>
<td>51 acres</td>
<td>50 acres</td>
</tr>
<tr>
<td>Depth of Contaminants</td>
<td>180 feet</td>
<td>60 feet</td>
</tr>
<tr>
<td>Constituents of Concern (COCs)</td>
<td>Tetrachloroethene (PCE) and daughter products</td>
<td>1,1,2,2-tetrachloroethane (PCA), trichloroethene (TCE), and daughter products</td>
</tr>
<tr>
<td>Key Receptors</td>
<td>Residents and industrial users, Downgradient creek</td>
<td>Industrial users, Downgradient creek</td>
</tr>
<tr>
<td>Complicating Site Features</td>
<td>Congested area (buildings, utilities, traffic), Non-aqueous phase liquid (NAPL)</td>
<td>Discontinuous confining unit, Elevated water table, NAPL</td>
</tr>
</tbody>
</table>
Site #1 Background

• Former Dry Cleaning Facility
• Investigations conducted since 1996 have identified PCE and daughter products in groundwater
 • Concentrations indicative of dense non-aqueous phase liquid (DNAPL), constituting principal threat waste
Site #1 Conceptual Site Model

- PCE originates from former dry cleaning building
- Migrated vertically to underlying clay unit
- Transported via groundwater flow vertically and horizontally to the west
Site #1 Remedial Strategy – Source Area

- DNAPL treatment via Non-time Critical Removal Action (NTCRA)
 - Soil mixing with zero valent iron (ZVI) and bentonite
 - Up to 99.9% reduction of PCE in soil
 - 91-100% reduction of PCE in groundwater

Soil mixing auger at Former Dry Cleaning Facility
Site #1 Remedial Strategy – Dissolved Plume

- Multiple groundwater treatment technologies for remediation of dissolved plume documented in Record of Decision (ROD)
 - Complements plume conditions in direction of groundwater flow
- **Source Area**: Enhanced reductive dechlorination (ERD) via vertical injection wells
- **Deep Dissolved Plume**: In situ chemical oxidation (ISCO) via horizontal directionally drilled (HDD) wells and recirculation
- **Downgradient Area**: Biobarrier via vertical injection wells
Site #1 Exit Strategy

- Milestones for active treatment in near source area (ERD) and deep dissolved plume (ISCO)
 - COCs reduced to active remediation goals
 - Based on protection of downgradient surface water body, as predicted by fate and transport modeling
 - Multiple lines of evidence for switching to MNA are observed:
 - Plume stability
 - Mass reduction
 - Groundwater fate and transport modeling indicates protectiveness of nearest surface water body
 - Sustained favorable geochemical conditions
Site #1 Exit Strategy

• Milestones for active treatment in downgradient plume (biobarrier)
 • COC concentrations are protective of downgradient receptors
 • Aquifer conditions suggest that biodegradation can be maintained naturally; further enhancements not required

• Transition to MNA
 • Until COCs reduced to levels protective of unlimited use / unrestricted exposure

• Optimization to be evaluated as part of Five Year Review process
Site #2 Background

- Former motor pool and DRMO
- Investigations conducted since 1996 have identified 1,1,2,2-PCA, TCE, and daughter products in groundwater
 - Concentrations indicative of DNAPL, constituting principal threat waste
Site #2 Conceptual Site Model

- Contaminants originate from use as motor pool storage yard from 1983 to 2000
- Vertical migration to discontinuous confining unit
- Transported via groundwater flow horizontally to the east towards surface water body
Site #2 Remedial Strategy – Source Area

- DNAPL treatment
 - 48,000 pounds of COCs removed
 - Soil mixing with ZVI and bentonite (2008)
 - 99.7% total COC reduction in soil
 - 92.3% total COC reduction in groundwater
Site #2 Remedial Strategy - Dissolved Plume

- Multiple groundwater treatment technologies for remediation of dissolved plume and surface water documented in ROD
 - Addresses contaminants at different stages of fate and transport
- **Source Area Groundwater:** Air sparging (AS) via vertical and horizontal injection wells
- **Downgradient groundwater:** Permeable reactive barrier
- **Surface water:** in-stream aeration
- **Sitewide:** MNA
Site #2 Exit Strategy

- AS milestones for system shut-down
 - COC reduction to below 100 µg/L within 50 feet of AS wells
 - COC reduction demonstrates asymptotic trends

- PRB milestones
 - Replenishment with emulsified vegetable oil (EVO) based on
 - COC concentrations and trends
 - Oxidation reduction potential (ORP)
 - Available organic carbon
 - Discontinue when COCs in groundwater are reduced to levels protective of unlimited use / unrestricted exposure
Site #2 Exit Strategy
• Surface water aerators
 • Discontinue when COCs in groundwater and surface water are below levels protective of unlimited use / unrestricted exposure
Site #2 Remedial Action Performance

- Air Sparging
 - COC concentrations continue to decline

- PRB
 - COCs are effectively treated
 - Replenished once after 3 years based on depleted TOC measurements

- Aerators
 - COCs continue to be discharged to surface water
 - COCs below surface water standards at most downgradient location

- MNA
 - COC concentrations are generally stable or decreasing

TCE Concentrations in Groundwater (2014 vs. 2016)
Summary

• Benefits of combined technologies
 • Source treatment combined with multiple remediation technologies to effectively address dissolved plumes
 • As demonstrated by two case studies
 • Optimize remedial strategy based on aquifer conditions
 • Minimize time to site closure by addressing multiple remediation objectives concurrently
 • Flexibility with active remediation transition points
Thank you!
Monica L. Fulkerson, P.E.

Acknowledgements
Matt Louth, P.G., Project Manager, Jacobs
Mike Perlmutter, P.E., Senior Technical Consultant, Jacobs
David Cleland, P.G., Remedial Project Manager, NAVFAC