“Urban Creek Impacted Sediment Removal and Isolation Utilizing a Geosynthetic Clay Liner”

Trevor Litwiller – Project Manager
Background

• Manufactured Gas Plant located in Indianapolis, Indiana
 • 1908 to 2007
 • 87 acres
• Produced manufactured gas and metallurgical coke
• Urban waterway:
 • Pleasant Run Creek (PRC)
 • 3,000 linear ft of channel bisects the property
 • Section of on-Site channel relocated in the 1940’s
Background
Site Investigation

- Indiana Voluntary Remediation Program (VRP) (2005)
- Investigation activities (2009-2016)
 - 120 monitoring wells;
 - 800 groundwater samples
 - 350 soil borings;
 - 600 soil samples
 - 500 surface soil samples; and,
 - 20 test pits.
Site Investigation
Pleasant Run Creek (PRC)

- Combined Sewer Overflow (CSO) discharge
- Highly incised channel
- Flow range from <10 MGD to >500 MGD
- Multiple investigations:
 - Visual inspections
 - Poling
 - Habitat Assessment
 - Bulk Sediment/Soil Sampling
 - Pore Water Sampling
- Human Health and Ecological Assessment
- TarGOST
2016 PRC Investigation
TarGOST Investigation
TarGOST Investigation
PRC IM Design Objectives

• Two (2) areas tied to gross contamination (2,000 linear ft)

• Objectives:
 • Mitigate direct contact potential with impacted soil/sediment
 • Mitigate potential for ecological risk from groundwater discharge
 • Protect PRC from being re-contaminated
 • Hydraulic Control + Surficial Excavation/ Capping
Design Considerations

• Hydraulic Control System
 • Upland Groundwater Control
 • Minimal upwelling (approx. 0.8 cm/day)
• Creek Diversion “Pump Around”
 • “Dry” application
• Isolation Barrier
• Restoration
 • Armoring
 • Overburden
PRC Interim Measure Design

Isolation Barrier:

• Geosynthetic Clay Liner (GCL)
 • Components
 • Advantages
 • Site-Specific Application

https://www.geosyntheticssociety.org/corporate/cpany_details/6507/
http://www.gseworld.com/content/documents/product-sheets/BentoLiner_Installation_QA_.pdf
Project Implementation

• “Phased” Work Approach (April-December 2017)
 • Phase I – Hydraulic Control Installation
 • Phase II – Mass Excavation
 • Phase III – Pump-Around & GCL Installation
Project Implementation

• Creek Pump-Around
Project Implementation

- Low Permeability Barrier
Project Implementation

• GCL and Material Placement
2019 Design and Construction Issues at Hazardous Waste Sites
Project Implementation

• Restoration
Project Success

✓ Design-build process allowed for implementation challenges to be quickly addressed
✓ Consistent application of the low permeability layer
✓ Uniform hydraulic conductivity and transmissivity
✓ Site characteristics made use of GCL viable.

➢ Future Obligations:
 ➢ Ongoing visual inspections (5-10 years).
 ➢ Institutional Controls
 ➢ Site Redevelopment
Thank You!

• Questions