SCIF Design and Construction Overview

Information Brief

16 APR 2020

Task
For Information

Purpose
Provide an informational brief to SAME on the basics of SCIF design and construction derived and condensed from USACE PDC SCIF design course

End State
Individuals understand the basics of SCIF design and construction
Agenda

- **** All information derived and condensed from USACE PDC SCIF design course*****
- History and purpose of SCIF design and construction
- Definitions and key documents
- Threats
- SCIF stakeholders
- OCONUS differences
- Physical construction
- TEMPEST
- Accrediation
SCIF design and construction

History

Ronald Reagan suspends construction of the new embassy in Moscow
UNCLASSIFIED

SCIF design and construction

Definitions and key documents

• SCI Types:
 - CONFIDENTIAL, SECRET, or TOP SECRET information
 - Derived from Intelligence Sources, Methods or Analytical Processes under control of DNI
 - SCI can only be handled in an Accredited SCIF

• SCIF classifications:
 - Conventional (minimum), Enhanced, or Vault
 - Protection depends on both Asset and Threat Analysis
 - Discussion Only, Open Storage, Closed Storage, Temporary
 - Mobile, Airborne, Shipboard (Permanent or Tactical)
 - Secure Working Area (no SCI Storage)
SCIF design and construction

Definitions and key documents

• Intelligence Community (IC):
 - Originally defined by National Security Act, 1947

• IC Directive, 26 May 2010:
 - Ensures protection of SCI
 - All IC SCIF shall comply
 - Physical and technical requirements
 - Provides for consistency, reciprocal use of space

 - Directive relies on standards and Tech Specs for Technical details
SCIF design and construction

Definitions and key documents

• IC Standard 705-1, 17 SEP 2010:
 - Sets forth Physical and Technical Security Standards for SCIF
 - Requires Risk Management during SCIF Planning, Design, Construction
 - Security in Depth Required for Overseas SCIF
 - Defines Open VS Closed storage of SCI
 - Requires Construction Security Plan (CSP)
 - Requires Protection of Design and Construction Documentation
 - Calls for Site Security Manager (SSM)
 - Defines Physical Security of SCIF boundary construction
 - Calls for Acoustical Shielding, Photonics Shielding, Physical Security, RF Shielding (if required)
 - Requires Access Control and IDS
 - Establishes roles and responsibilities of key personnel
 - Sets forth Accreditation and Reciprocal use standards for SCIF
SCIF design and construction

Definitions and key documents

• ICD Tech Specs, V 1.3 10 SEP 2015:
 - A ‘How to’ manual to satisfy the standards
 - Defines steps of Analytical Risk Management process
 - Further Refines SCIF construction requirements
 - Includes additional requirements for SCIF overseas
 - Gives technical requirements of IDS, Acoustics, TEMPEST, Building systems
 - Restricts use of Portable Electronic Devices in SCIF
 - Limits selection of Unclassified Telephone Equipment

• UFCs
 • UFC 4-010-01 & 02: DoD Minimum Antiterrorism Standards/Standoff Distances for Buildings
 • UFC 4-010-05: Sensitive Compartmented Information Facilities Planning, Design and Construction
Threats

• Threat Types:
 - Physical Compromise
 - Visual collection or theft of Documents
 - Eavesdropping, Audio Recording
 - Technical Collection and Compromise

- Threat Analysis is critical to an effective SCIF
SCIF Stakeholders

• Accrediting Official (AO)
 − Person designated by the Cognizant Security Authority (CSA) who is responsible for all aspects of SCIF management and operations to include security policy implementation and oversight.

• Site Security Manager (SSM)
 − Person designated by the AO who is responsible for all aspects of SCIF management and operations to include security policy implementation and oversight.

• Certified TEMPEST Technical Authority (CTTA)
 − US Government appointed employee who has met established certification requirements in regard to TEMPEST
SCIF Stakeholders continued

• Mission Users
 – Persons who will work, operate, handle SCI in the facility once the facility becomes operational

• Architect – Engineer
 – Design of SCIF shall be performed by US Companies utilizing US Citizens or US Persons
 – A-E’s with past experience in SCIF planning and design provides a big benefit to the Government

• Construction Contractor
 – Construction of SCIF shall be performed by US Companies utilizing US Citizens or US Persons
 – Construction teams with past experience in SCIF construction techniques also provides a benefit to the Government
SCIF design and construction

OCONUS differences during construction

• Personnel:
 - Cleared Employees – contractor employees granted a Personnel security clearance
 - Cleared commercial carrier – carrier authorized by law or regulation to transport SECRET material and has a SECRET facility clearance
 - Constant Surveillance Service – protective transportation service provided by a commercial carrier qualified by MTMC, requires constant surveillance

• Materials:
 - Usually procured from CONUS and shipped in secure containers
 - Tracked and stored in secure site on location
 - Escorted to and from sites
 - If materials procured locally (example concrete) will have inspector on site throughout manufacturing process
SCIF design and construction

Physical Construction

• Wall type:
 - Will go from true floor to true ceiling, may contain expanded metal mesh, usually has multiple layers of drywall
 - Utilities should be ran in a visible manner to allow for inspection

• Doors:
 - Only ONE Primary SCIF entrance door with vestibule for protection
 - GSA approved deadbolt
 - Combination Lock
 - Equipped with Automatic Closer
 - Alarmed
 - Tamper resistant Hinges and Hinge pins
 - Additional emergency exits to include egress deadbolt and no external hardware. Also includes ACS alarm and local audible alarm
Physical Construction

Controlled Area

- Bottom of Deck
- Fire-safe or non-shrink grout in all voids above track.

Uncontrolled Area

- Sealant all around Duct Openings or Pipe/Conduit Penetrations
- Wall Finish as scheduled with finish continuous above any false ceiling

5/8” gypsum wallboard

- Continuous track (Top & Bottom) w/ anchors at 32” o.c. maximum – Bed in continuous beads of acoustical sealant

3 ½” sound attenuation material, fastened in such a way as to prevent it from sliding down and leaving void at the top.

5/8” gypsum wallboard – sound group 4 requires additional layer of 5/8” wallboard

Wall Base and Scheduled flooring
UNCLASSIFIED

SCIF design and construction

Physical Construction

Controlled Side

- Bottom of Deck
- Fire safe non-shrink grout, or acoustic sealant in all voids above track (note 2) - both sides of partition
- Acoustical ceiling

Uncontrolled Side

- Entire wall assembly shall be finished and painted from true floor to true ceiling
- 5/8” Gypsum Wall Board (GWB)
- 3 ½” (89mm) sound attenuation material, fastened to prevent sliding down and leaving void at the top

- Two layers of 5/8” Gypsum Wall Board (GWB) mounted on 3-5/8” 16 gauge metal framing or 2x4 studs at 16” o.c.
- 16 gauge continuous track (top & bottom) w/ anchors at 32” o.c. maximum – bed in continuous bead of acoustical sealant (note 2)

- Scheduled wall finish to be continuous above false ceiling and below raised floor

- Scheduled wall Base (both sides of partition)
- Continuous acoustic sealant in void (note 2) - both sides of partition

- Finished floor
- Structural floor
SCIF design and construction

Physical Construction
SCIF design and construction

Physical Construction

• Windows:
 - Highly Discouraged!!!
 - If unavoidable must not open
 - Protected by security alarms when they are within 18 feet of ground or from an accessible platform
 - Protected against forced entry
 - Photonic protection
 - Acoustic Protection
 - TEMPEST/RF shielding protection when directed by CTTA

• Electronic Security Systems:
 - IDS, CCTV, Access control system
 - Multiple IDS devices utilized in high risk areas
 - Layered or nested security
• What is it?:
 - Science of light generation, detection and manipulation; through emission, transmission, modulation, signal processing, switching and amplification.

• Examples of Photonic data that can be compromised:
 - Low light level cameras
 - Detection of vibration created by sound
 - Visible via infrared and ultraviolet detection
 - High quality photography and video
 - Image transference to surrounding materials

• Mitigation techniques:
 - Thin film or laminate that can be frosted, silvered or tinted
 - Smart glass
 - Shades, blinds, Louvers
 - Partition wall that blocks window
 - Interior wall that blocks windows
SCIF design and construction

Photonics
SCIF design and construction

Acoustics

• What is it?:
 - Sound and how to mitigate transference of sound

• Acoustical paths:
 - Airborne: sound that radiates from a source directly through the air
 - Structural: Sound that travels through Solid materials and building materials

• Acoustic design principles:
 - Increase mass, increase rigidity, increase layers, eliminate apertures, eliminate waveguides

• Mitigation techniques:
 - Wall construction, usually uses gypsum wall board but can also use plywood. Must have offset seams!!
 - Seal all holes with acoustical foam
 - Install baffles or utilize acoustical duct lining
 - Avoid straight lines in ducts
 - Windows must have multiple glass layers and air gaps
 - Install sound masking devices
SCIF design and construction

Acoustics
SCIF design and construction

Tempest

• What is it?:
 - Any electronic or radio frequency signal that can be exploited, compromised, or intercepted by technical devices or means.

• Most current and common definition:
 - EM technical security referring to the investigation, study and control of EM emanations from telecom, Datacom, computers, and electronic devices

• Mitigation techniques:
 - Wall construction, same as other types but includes RF shielding
 - Floor and ceiling must also include shielding
 - Shielding must overlap at all seams
 - Keep all penetrations to a minimum
 - Avoid galvanic corrosion
 - Seals and gaskets must be approved for RF
 - Include a dielectric break at all piping penetrations
 - HVAC systems can have a dielectric break, Honeycomb filter, or waveguide
SCIF design and construction

Tempest
SCIF design and construction

Red/Black Data communications

• What is it?:
 - Red = secret or above
 - Black = encrypted classified or non classified data

• Red/Black data communications principals:
 - Eliminate emanation of signals from communications cabling systems
 - Reduce electromagnetic interference
 - Provide physical protection

• Mitigation techniques:
 - Six design techniques: Physical separation, physical protection, shielding, filtering and isolation, bonding, grounding
SCIF design and construction

Accreditation

• Requirements:
 - Testing and certification
 - Documentation
 - Walkthroughs
 - Decommissioning plan
Closing

• History and purpose of SCIF design and construction
• Definitions and key documents
• Threats
• SCIF stakeholders
• OCONUS differences
• Physical construction
• TEMPEST
• Accreditation
• SCIF design and construction is costly, detailed and long in duration
Questions?