Snohomish County Watershed-Scale Stormwater Management Planning for Little Bear Creek - Analysis of Factors Affecting BIBI

Frank Leonetti and Arthur Lee
Snohomish County Public Works
Surface Water Management
Everett, WA

SAME
Sustainability Training Forum
Seattle, WA
March 28, 2019
Plan Objective

To identify stormwater strategies that will meet water quality standards that support use of Little Bear Creek for people and aquatic life

1. NPDES Phase 1 requirement
2. Performance targets
3. ID Strategies/costs

2004 watershed evaluation for salmon recovery planning suggested Little Bear Creek was most “at risk”
Benthic Index of Biological Integrity

- **10 metrics comprise**
- **10-50 point scale**
- **500 minimum bug count**
- **LBC 20-54 species** (39-81 is excellent range)
- **Responds to gradient of disturbance**

<table>
<thead>
<tr>
<th>Biological Condition</th>
<th>Description</th>
<th>B-IBI<sub>10-50</sub></th>
</tr>
</thead>
<tbody>
<tr>
<td>Excellent</td>
<td>Comparable to least disturbed reference condition; overall high taxa diversity, particularly of Ephemeroptera (mayfly), Plecoptera (stonefly), Trichoptera (caddisfly), long-lived, clinger, and intolerant taxa. Relative abundance of predators high.</td>
<td>[46, 50]</td>
</tr>
<tr>
<td>Good</td>
<td>Slightly divergent from least disturbed condition; absence of some long-lived and intolerant taxa; slight decline in richness of Ephemeroptera, Plecoptera, and Trichoptera; proportion of tolerant individuals increases.</td>
<td>[38, 44]</td>
</tr>
<tr>
<td>Fair</td>
<td>Total taxa richness reduced – particularly intolerant, long-lived, Plecoptera, and clinger taxa; relative abundance of predators declines; proportion of tolerant individuals continues to increase.</td>
<td>[28, 36]</td>
</tr>
<tr>
<td>Poor</td>
<td>Overall taxa diversity depressed; proportion of predators greatly reduced as is long-lived taxa richness; few Plecoptera or intolerant taxa present; dominance by three most abundant taxa often very high.</td>
<td>[18, 26]</td>
</tr>
<tr>
<td>Very Poor</td>
<td>Overall taxa diversity very low and dominated by a few highly tolerant taxa; Ephemeroptera, Plecoptera, caddisfly, clinger, long-lived, and intolerant taxa largely absent; relative abundance of predators very low.</td>
<td>[10, 16]</td>
</tr>
</tbody>
</table>

From King County 2014
BIBI - Lines of Evidence – 25+ Years

Based on subbasin-scale analyses across urban-forest gradient

<table>
<thead>
<tr>
<th>Lines of Evidence</th>
<th>Indicators/Metrics</th>
<th>Investigators (published/unpublished)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Land cover (i.e., Total Impervious Area, Forest)</td>
<td>% Impervious/Forest Cover or Combination</td>
<td>Alberti, Booth, May, Morley, Horner, WRIA 8, Leonetti</td>
</tr>
<tr>
<td>Riparian Buffers</td>
<td>Buffer Land cover as above</td>
<td>Morley, May, Horner, McBride, WRIA 8</td>
</tr>
<tr>
<td>Hydrology</td>
<td>8-9 Flow Metrics by site, year, and averages (WY or CY)</td>
<td>Konrad and Booth, DeGasperi et al., Cassin et al., WRIA 8 study, Others</td>
</tr>
<tr>
<td>Sediment/Substrate</td>
<td>Fine sediment/ D50</td>
<td>ODEQ, Plotnikoff, Dorfmeir,</td>
</tr>
<tr>
<td>Hydraulics</td>
<td>Bed Shear Stress, HPC2, HPD2, theta</td>
<td>Morley, Examples from Hartley</td>
</tr>
<tr>
<td>Channel/Habitat</td>
<td>Combination - HQI, PSCI, EAI</td>
<td>May, McBride, King County 1999, WRIA 8 study</td>
</tr>
</tbody>
</table>

Factors/Influence for “At-A-Site” management are largely unknown
• 13.6 m²
• Impervious area ≈10-40%
• Avg Bankfull width ≈1.6-10m
• 17.5 miles mainstem
• 303D listed for Bioassessment
• 41 inches precip

• Kleindl 1994
• May 1996/1997
• King County 2001
• Morley 2000
• McBride 2001
• King County 2005
• Alberti & Shandas 2009
• Snohomish County 2016
9 subbasins – mixed land uses – forest & impervious
What we did for Little Bear Creek analyses

- Described BIBI scores for 15 sites, over time (2002-2015)
 - Snohomish County and King County data
- Described land cover/ stream buffer conditions from BIBI sites (2013 NAIP Land cover classification)
- Calculated Gaged (2) and HSPF modeled flow metrics (2002-2015)
- Described substrate, bed stability, channel conditions and changes between 2014-2015
- Exploratory analyses of factors x BIBI scores
 - By Site
 - By Year
 - Least-squares regression
B-IBI Sites

7 long-term mainstem sites;

10 total mainstem sites;

4 tributaries
Site scores (‘02-’15)

• Are there trends?
• Do site scores increase/decrease similarly over time?
• Do sites change condition categories (poor, fair, good, etc)?
• Are avg. site scores correlated with upstream landcover?
• Are avg. site scores correlated with buffer condition?
 – Does residual buffer condition (to basin landcover) correlate with BIBI
• Are avg. site scores correlated with averaged hydrologic metrics?
• Are annual scores correlated with annual flow metrics?
• Are annual score changes (+/- BIBI points) correlated with annual difference in flow metrics (by site and by site averages)?
• Are 2014/2015 scores correlated with sediment (<2mm) quantity?
• Are annual score changes (+/- BIBI points) correlated with annual differences in sediment?
Site scores (‘02-’15)

- 1 site-pair (2602/2692) was correlated out of 21 site-pairs
- Thought 1 site (2585) positive/ 1 site (2781) neg trend
- Added 2016 and site 2603 is positive at $\alpha=0.05$
- Site 2692 changes most from year-year
Landcover (2013 NAIP w/ 1-ft 2011 Impervious Mapping)

• Mainstem Little Bear Creek locations
Does better/worse buffer explain residual BIBI relative to Land Cover? (LCI = %Forest - %TIA)
Hydrologic metrics – magnitude, duration, timing, frequency, variability

- High Pulse Count
- High Pulse Duration
- High Pulse Range
- Low Pulse Count
- Low Pulse Duration
- Low Pulse Range
- TQmean
- R-B Flashiness Index (RBI)
- Fall/Rise Rates
- Flow Reversals

• DeGasperi et al. 2009 (Juanita)
• King County 2015 (WRIA 8 study)
• Horner 2013
• King County 2012
• King County 2005
Comparing LBC Flow-BIBI to regional regressions

2002-2015 Long-term average BIBI at 10 LBC Mainstem sites

Next, Also compared to WRIA 8 Study (2010-2013 data) – King County 2015
Long-term (5-12 years) BIBI Average at 10 mainstem LBC sites
Time series (2002-2015)
Shows change in HPC – HSPF model
Time series (2002-2015)
Shows change in HPC (HSPF) and B-IBI for 5 long term sites

- Some inverse relationship evident

Avg HPC 5 Sites
\[y = 0.489x - 970.64 \]
\[R^2 = 0.2436; p=0.07 \]

Avg BIBI 5 sites
\[y = -0.0604x + 151.99 \]
\[R^2 = 0.0155; NS \]
Influence of annually persistent flow values – 2.8 BIBI pts

\[
y = -0.4746x + 36.122 \\
R^2 = 0.604
\]
Flow metric Year-Year Change and BIBI Change

![Graph showing Year-Year Change and BIBI Change](image)
Fine sediment

Sediment at BIBI quadrats, BIBI riffles, Survey-wide transects.

- 25 grid points x 8 quadrats = 200 potential fine sed pts.
 - (#grid pts/ 200)*100 = % surface fines in quadrat
- 25 pebble count per riffle x 8 riffles = 200 pebbles
 - (#pebbles-sand or finer / 200) *100 = % riffle fines
2014, 2015
54 sediment metrics – mainstem and tribs

Fine Sediment in BIBI quadrats and sampled riffles 2014, 2015
Tributaries had higher HPC and flashiness.
Roughness and Relative Bed Stability (EPA-EMAP)

- Simple description
 - Observed Gravel Size/ Erodible Gravel Size

- Data included are slope, avg. channel depth, substrate size (pebble count)

- Mainstem and Tribs
 - Tribs have highest values!

\[
y = 5.9842x + 31.125 \\
R^2 = 0.2919
\]

\[
y = 9.5319x + 30.35 \\
R^2 = 0.309
\]
Channel Roughness (Morley 2000) – D84/BankFullDepth or D50/BankFullDepth
Summary of LBC Analyses

• Basin and Buffer Land Cover quality is supportive of BIBI scores

• Established within-basin correlation of flow and BIBI for mainstem sites (better fit than LC alone)

• WRIA 8 Flow-BIBI dataset was better fit to long-term mainstem sites

• Correlation with HPC/HPR/RBI was best and regionally consistent

• Annual flow changes correlate w/BIBI changes, which may also respond to changes in sediment

• Tribs - Higher flow/flashiness, less sand/fines, greater D50, better buffer quality, smaller X-sectional area may not produce same disturbance effect on streambed OR may mask/mitigate effect?

• Next Steps – Develop site- or catchment-scale narrative for protection/restoration – Flow, Buffer, Sediment, Roughness
BMP* Implications

• Protect and Restore buffer quality

• Implement SW flow control retrofits to reduce high pulses and flashiness metrics

• Reduce sources and limit fine sediment supply/transport

• Protect and improve channel roughness

*Best Management Practice
Cost of Modeled Strategies

1. **HSPF**
 - Baseline flow, shading benefit (riparian planting)
 $ 5 M

2. **SUSTAIN**
 - Optimize BMP** suite for flow control (B-IBI)
 $ 229 M
 - Reduce fecal coliform, temperature

3. **HSPF**
 - Routing
 - Optimize for temperature using bioretention
 $ 6 M
 - Optimize for fecal coliform using biofiltration
 $ 49 M

Projected Cost

$ 289 M

Figures are rounded
Other Strategies

<table>
<thead>
<tr>
<th>Structural</th>
<th>Non-Structural</th>
<th>Instream</th>
</tr>
</thead>
<tbody>
<tr>
<td>Filter Strips*</td>
<td>Development Code Change*</td>
<td>Riparian Planting</td>
</tr>
<tr>
<td>Raingardens*</td>
<td>Supplemental Treatment*</td>
<td>Buffer Enhancement*</td>
</tr>
<tr>
<td>Bioretention*</td>
<td>Street Sweeping</td>
<td>Stream Restoration</td>
</tr>
<tr>
<td>Downspout Disconnection</td>
<td>Water Quality Outreach</td>
<td>Wetland Restoration</td>
</tr>
<tr>
<td>Detention/Retention*</td>
<td>Bacteria Source Tracking</td>
<td>Bank Stabilization</td>
</tr>
<tr>
<td>Permeable Pavement*</td>
<td>Property Acquisition</td>
<td>Ditch Modifications*</td>
</tr>
<tr>
<td>Amended Soils*</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cisterns</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Flow Augmentation</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* Modeled strategy
Existing and Projected WQ Conditions

<table>
<thead>
<tr>
<th>STANDARD / TARGET</th>
<th>EXISTING</th>
<th>FUTURE BUILD-OUT</th>
<th>FUTURE BUILD-OUT WITH PLAN</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dissolved Zinc</td>
<td>✔️</td>
<td>✔️</td>
<td>✔️</td>
</tr>
<tr>
<td>Dissolved Copper</td>
<td>✔️</td>
<td>✔️</td>
<td>✔️</td>
</tr>
<tr>
<td>Temperature</td>
<td>🟥</td>
<td>🟥</td>
<td>🟥</td>
</tr>
<tr>
<td>Fecal Coliform</td>
<td>🟥</td>
<td>🟥</td>
<td>🟥</td>
</tr>
<tr>
<td>B-IBI (aquatic health)</td>
<td>🟥</td>
<td>🟥</td>
<td>🟥</td>
</tr>
</tbody>
</table>