Multi-Component Treatment Strategy for Chlorinated Ethene and Chlorinated Benzene DNAPL Source Area at Hunters Point Shipyard

Ryan A. Wymore, P.E., CDM Smith
Tamzen Macbeth, Ph.D., P.E., Hamide Kayaci, Melanie Kito, Keith Forman, Adam Locke, Gorm Heron
Background

• Hunters Point Naval Shipyard (HPNS) in San Francisco CA, Building 134 was historically used for machining operations and contained a degreaser and a sump for separating chlorinated solvents from sludge.

• Contaminants, primarily chlorinated benzenes and ethenes were released into the subsurface as dense non aqueous phase liquid (DNAPL).

• Conducted a treatability study (TS) to evaluate multi-component treatment strategy for the contaminant source area and dissolved phase plume.
HPNS Treatability Study Area

Former degreaser/sump

Building 134
Problem: Complex Mix of Contaminants in Groundwater and Low-Permeability Soils

Building 134 source area containing DNAPL.

Volatile Organic Contaminants (VOCs):
- 1,2 Dichlorobenzene (DCB),
- 1,3 DCB,
- 1,4 DCB,
- Chlorobenzene (CB),
- Trichloroethene (TCE),
- Tetrachloroethene (PCE),
- cis-Dichloroethene (DCE)
- Vinyl chloride (VC).
Complex Geology/Hydrology

- **A-E Aquifer**
 - Bedrock
 - Bay Mud
 - **B-Aquifer k** = 0.014 - 0.078 ft/d
 - **A-Aquifer k** = 0.8 - 4.2 ft/d

- **Bedrock**
 - k = 0.36 - 1.04 ft/d
Treatability Study Objectives

Groundwater Treatment Technology: Hydraulic Fracturing to emplace EHC®

- Destruction of contaminants to achieve an 80% reduction of chlorinated VOCs in groundwater.
- Polish remaining VOCs post-TCH to meet very stringent cleanup criteria (generally less than 5 ppb).

Soil/DNAPL Treatment Technology: Thermal Conduction Heating (TCH)

- Thermally-Enhanced Extraction of DNAPL.
- Destruction of contaminants to achieve a 90% reduction in chlorinated VOCs in soil.

Achieve Objectives in Stringent 18 month Timeframe
Pre-Remediation: DNAPL/Soil Mass Estimate

Estimate ~300 lb of VOCs present in the source area.

Total (lbs)

<table>
<thead>
<tr>
<th></th>
<th>1,2-DCB</th>
<th>1,2-DCA</th>
<th>1,3-DCB</th>
<th>1,4-DCB</th>
<th>PCE</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Before Rem</td>
<td>136</td>
<td>2.8</td>
<td>2.8</td>
<td>48</td>
<td>101</td>
<td>291</td>
</tr>
<tr>
<td>Remediation</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Pre-Remediation: Groundwater Contaminant Plume

<table>
<thead>
<tr>
<th>Total (lbs)</th>
<th>1,2-DCB</th>
<th>1,2-DCA</th>
<th>1,3-DCB</th>
<th>1,4-DCB</th>
<th>PCE</th>
<th>benzene</th>
<th>CB</th>
<th>Cis-DCE</th>
<th>TCE</th>
<th>VC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Before Remediation:</td>
<td>4.7</td>
<td>0.7</td>
<td>0.01</td>
<td>1.5</td>
<td>0.6</td>
<td>0.03</td>
<td>0.2</td>
<td>2.1</td>
<td>0.2</td>
<td>0.6</td>
</tr>
</tbody>
</table>

Total Mass in Groundwater: 10.6 lbs
Technology 1 Implementation: Hydraulic Fracturing/EHC® Emplacement

- Advanced 6 source fracture wells (SFW) and 6 plume fracture wells (PFW).
- Radius of amendment distribution 15-20 feet from fracture location.
- Emplaced 13,419 lbs in SFWs and 17,126 lbs of amendment EHC® in PFWs.
In Situ Attenuation Pathways

Chloroethene Degradation Pathway

- Tetrachloroethene (PCE)
 - reductive dechlorination
- Trichloroethene (TCE)
 - reductive dechlorination
- Dichloroethene (trans-1,2-DCE) (1,1-DCE)
 - reductive dechlorination
- Vinyl Chloride (VC)
 - reductive dechlorination
- Ethene
- Ethane

Chlorobenzene Degradation Pathway

- 1,2,4-trichlorobenzene (1,2,4-TCB)
- Dichlorobenzene (1,2-DCB, 1,4-DCB)
- Chlorobenzene
- Benzene

Reductive B-elimination

Manganese-reducing conditions
Anaerobic oxidation

Acetate
Sulfate-reducing/iron reductin conditions/anaerobic oxidation

Sulfate-reducing conditions

Biological reaction
Abiotic reaction

CO₂
CH₄
Evaluate Fracture Propagation: Tiltmeter Geophysics

- Analyzed tiltmeter data for 60 of 87 fracs.
- Modeled fracs for every borehole except PFW6 (near IR26MW16A).

Tiltmeters estimate:
1) Frac extent,
2) How fracs are centered to the borehole, and
3) How fracs propagate.
Results of Fracking: Amendment Distribution

- Established treatment 18-23 feet from the fracture boreholes.
- Geochemical conditions conducive to reductive dechlorination, i.e. methane-producing redox and pH > 5.5.
- Heterogeneous distribution of amendments.
- Evaluated Technology for 4 months.
Technology 2 Implementation: Thermal Conduction Heating

- Installed 18 heater wells, soil vapor extraction system and above ground treatment.
- Operated system for 4 months.
Organic Removal in Extracted Vapors During TCH

Mass Removal

- Influent Vapor Rate (based on PID) [lbs/day]
- Effluent Vapor Rate (based on PID) [lbs/day]
- Average TTZ temp [°F]

Graph showing the mass extraction rate and average temperature over time.
Contaminant Removal in Extracted Vapors During TCH
Contaminant Mass Before and After-Treatment in Soil

Pre-TCH Soil total VOCs | Post-TCH Soil total VOCs

<table>
<thead>
<tr>
<th>Total (lbs)</th>
<th>12DCB</th>
<th>12DCA</th>
<th>13DCB</th>
<th>14DCB</th>
<th>PCE</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Before Remediation:</td>
<td>136</td>
<td>2.80</td>
<td>2.80</td>
<td>48.00</td>
<td>101.00</td>
<td>291</td>
</tr>
<tr>
<td>After Remediation:</td>
<td>19.1</td>
<td>0.01</td>
<td>0.08</td>
<td>2.60</td>
<td>0.01</td>
<td>22</td>
</tr>
<tr>
<td>% Reduction</td>
<td>86%</td>
<td>99.8%</td>
<td>97.2%</td>
<td>94.6%</td>
<td>99.9%</td>
<td>92.5%</td>
</tr>
</tbody>
</table>
Contaminant Mass Before and After-Treatment in Groundwater

<table>
<thead>
<tr>
<th>Parent Compounds</th>
<th>Reductive Daughter Products</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1,2-DCB</td>
</tr>
<tr>
<td>Before Remediation:</td>
<td>4.7</td>
</tr>
<tr>
<td>After Remediation:</td>
<td>2.7</td>
</tr>
<tr>
<td>% Reduction</td>
<td>44%</td>
</tr>
</tbody>
</table>

Total CoC Mass In Groundwater Pre-Treatment- 10.6 lbs
Total CoC Mass In Groundwater Post-Treatment- 4.1 lbs
Chlorinated Benzenes: IR25MW63A
Chlorinated Ethenes: IR25MW63A

Fracturing TCH

VOCs (ug/L)

TETRACHLOROETHENE
TRICHLOROETHENE
1,2-DICHLOROETHANE
CIS-1,2-DICHLOROETHENE
VINYL CHLORIDE
ETHENE
ETHANE
Fracturing and Injection

cis-1,2-DCE PAL = 6 ug/L,
TCE PAL = 2.9 ug/L,
PCE, 1,2-DCA, and
VC PAL = 0.5 ug/L
Chlorinated Benzenes: IR25MW64A

IR25MW64A

Fracturing → TCH

1,3-DCB, 1,4-DCB, CB, and Benzene (ug/L)

1,2-DCB PAL = 600 ug/L
1,3-DCB PAL = 183 ug/L
CB PAL = 70 ug/L
Benzene PAL = 0.5 ug/L
1,4-DCB PAL = 2.1 ug/L
Chlorinated Ethenes: IR25MW64A

- Fracturing
- TCH

Graph Details:
- Y-axis: VOCs (ug/L)
- Lines represent different VOCs:
 - Tetrachloroethene
 - Trichloroethene
 - 1,2-Dichloroethane
 - cis-1,2-Dichloroethene
 - Vinyl Chloride
 - Ethene
 - Ethane
 - Fracturing and Injection

Legend:
- TCE PAL = 2.9 ug/l
- PCE, 1,2-DCA, and VC PAL = 0.5 ug/l
- cis-1,2-DCE PAL = 6 ug/l

Sites:
- IR25MW62A
- IR25MW63A
- IR25MW64A
- IR25MW65B
Long-term Results - Dichlorobenzenes

Graph showing the concentration of different dichlorobenzenes over time, with levels dropping significantly during thermal treatment.
Long-term Results - Chloroethenes
Conclusions: HPNS Treatability Study

- Tiltmeter data: frac extent ranged from 2.5 to 89 ft, with an average extent from the borehole of 18-23 feet in the source area and 13-24 feet in the dissolved phase plume.

- Based on tiltmeter and geochemical changes the radius of influence > 20 ft. EHC® was emplaced as discrete “sheets” with diffusion of amendments to groundwater effective at creating reducing within the source area and dissolved plume treatment areas.

- Fracturing/EHC® - a 24-99.9% reduction in PCE and 1,2-DCA achieved and a 5-57% reduction in 1,2-, 1,3- and 1,4-DCB within four months.

- PCE reduced to ethene through cis-DCE and VC, and the dichlorobenzenes predominantly reduced to chlorobenzene with little benzene four months after injection.
Conclusions: Impact of Thermal Treatment

- Little/no reductive dechlorination observed at temperatures >70°C.

- Removed >90% of total VOC mass in soil, with lowest removal observed for 1,2-DCB (86%) and highest for PCE (99.9%).

- Initially, parent compound groundwater concentrations reduced 50-93% for 1,2-DCB, 1,3-DCB, 1,4-DCB, except in IR25MW63A, and >94-100% for PCE and 1,2-DCA.

- Reductive daughter product concentrations reduced 61-99% for chlorobenzene/benzene except IR25MW62A and IR25MW63A which increased (due to post-TCH attenuation).

- Thermally-enhanced ISB, post-ISTR, has increased treatment rates by a factor of two compared to ISB alone, resulting in 90-99.99 % reductions in contaminants in groundwater.