Assessing Assets for Climate-Related Severe Weather Threats to Reduce Vulnerability and Increase Resilience - A Risk-based Process

SAME
Stuttgart
Michael Bilney
Principal
Cardno Government Services
1 March 2017
michael.bilney@cardno-gs.com

“It is probable that improbable things will happen. Granted this, one might argue that what is improbable is probable.” Aristotle
Introduction to Cardno Government Services
Approach to Climate Change and Facility Resilience

• Risk-based Approach
• Definitions of Terms Used
• 3 Phased Assessment Process
• Adaptation and Resilience Improvement Planning
• Standardized Process
• Lessons Learned
Cardno Government Services’ Analysis of Climate Change Effects, Adaptation and Resilience

• Our approach is **not about the science** of Climate Change

• **It is about installation and facility** assets and their vulnerability to climate severe weather threats, resilience, and related risk

• **Problem:** How to address enterprise-wide and installation-specific need for climate and weather related assessments and prioritize potential investments to improve adaptation and resilience?

• **Goal:** A qualitative, systematic risk-based approach that is simple & scalable; designed to be easily communicated to decision-makers

• **Objective:** Defensible, Auditable, Repeatable, and Transparent (DART™) Method
We Start With Definitions, Which Should Be

- Simple
- Shared
- If possible, already used by the organization
- Easily communicated within the organization
- Translatable outside the organization
Defining Facility Resilience

Capacity and Capability of a system to adapt to disruption (shocks...), and recover to a structure and state of function similar to what previously existed... (Synthesized from C.S. Holling)

• Others Important Terms...
 – Robust
 – Redundant
 – Ready
 – Adaptation
 – Risk
Definition of Risk-Related Terms Used

• Risk is related to two factors/elements:

 – **Threat**: a possible bad event with a bad result (“stuff happens”) for an installation, facility, asset

 – **Vulnerability**: how easy (more vulnerable) or difficult (less vulnerable) it is for a facility to have bad “stuff” happen to it

• Risk rated qualitatively by combining:

 – **Likelihood**: uncertainty of bad “stuff” happening

 – **Severity**: consequences or how bad the bad “stuff” can be
Threat and Vulnerability Risk and Resilience Assessment – Key Terms and Activities
Approach to Climate Severe Weather Event Threat and Vulnerability Assessment – Likelihood and Severity Indicators of Risk

• Types of threats as Likelihood Indicators:
 – Sea Level Rise (and flooding; storm/tidal surge)
 – Severe Weather - historical storm tracks (hurricanes/typhoons/tornados/hail)
 – Precipitation change (rain; drought)
 – Temperature Increase (energy use/habitability)

• We establish likelihood by combining events, conditions because they are synergistic

• We establish severity as Current Replacement Value (CRV) for effect in $$

• Rate risk by combining Likelihood and Severity ratings of individual facilities

• Identify natural breaks in the data to set levels of risk: High, Medium and Low

• Rank according to risk-level ratings to identify “most at risk to climate/severe weather events”
Qualitative Risk Rating

Likelihood x Severity = Risk (Qualitative)

Example Likelihood Matrix

<table>
<thead>
<tr>
<th>Sea Level Rise Vulnerability Likelihood</th>
<th>Located within a model-defined SLR affected area</th>
<th>Proximity to shoreline (less than 1 Mile)</th>
<th>Proximity to shoreline (More than 1 Mile)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Located within a model-defined SLR affected area</td>
<td>High</td>
<td>High</td>
<td>High</td>
</tr>
<tr>
<td>Elevation less than 25 feet MSL</td>
<td>High</td>
<td>High</td>
<td>Medium</td>
</tr>
<tr>
<td>Elevation greater than 25 MSL</td>
<td>High</td>
<td>Medium</td>
<td>Low</td>
</tr>
<tr>
<td>If Sea Level Rise at nearest station has a negative trend:</td>
<td>Low</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SEVERITY</th>
</tr>
</thead>
<tbody>
<tr>
<td>High</td>
</tr>
<tr>
<td>Medium</td>
</tr>
<tr>
<td>Low</td>
</tr>
</tbody>
</table>

If CRV > $9.5 mm
If CRV < $9.5 mm but > $1 mm
If CRV < $1 mm
Phase I of Assessment
Identify and Rank Facilities Most at Risk to Climate/Severe Weather Event Threats and Vulnerability

- Identify inventory/list and locations of installations, facilities, assets to evaluate
- Use existing publicly available data to specify location
- Screen installations, facilities, assets identify
- Determine properties/facilities/assets most important to the organization
- Rate and rank by relative risk to identify and prioritize installations, facilities, assets most at risk.
Phase II: On-Site Assessments

- Establish Guiding Principles for on-site analysis and standardized process of analysis
- Develop a defined, standardized process for the assessment to provide consistency of comparison across installations, facilities, assets
- Conduct site-specific installation severe weather condition assessments (ISWCA) at high risk locations and assets
- Evaluate vulnerability to local climate and weather conditions/events along with local infrastructure support networks (e.g., roads, power, crisis management)
- Research local climate-related planning efforts for collaboration and synergy
Phase III: Adaptation and Resilience Improvement Plans

- Plans based on findings of the ISWCAs along with prior Asset Management Facility Condition Assessments (FCA)
- Identify technologies to improve robust nature of the building envelop, e.g. paints, windows, stormwater management
- Identify means to improve placement of key equipment, e.g. generators, HVAC
- Identify additional or improved scheduling of maintenance
- Recommend prioritized future facility improvement investments, e.g. landscaping, equipment replacement
- Recommend rough order of magnitude (ROM) costs of investments, e.g. replacement of key building envelop components
- Compile Lessons Learned and share
Summarized Key Guiding Principles

• Integrate climate/severe weather considerations, assessment data, and adaptation and resilience improvement plans into other enterprise, installation, asset planning

• Use results of analysis to inform short and long-term maintenance and continuity of operations documents

• Resilience assessment is an ongoing, iterative exercise

• Facility Climate and Weather Condition Assessments and Facility Condition Assessment data, should be easily available for future planning efforts
Summary of Key Standardized Process Steps

- Conduct in-briefs with high-level overview of background and intent of the assessment and planned use of results

- Gather comments and updates to preliminary information obtained and thoughts, ideas, anecdotal data from SMEs not available in databases

- Assessment team and installation management SMEs consider local and regional:
 - Severe weather impacts
 - Planning efforts
 - Host Nation Code assessments
 - Validate background research
 - Collect anecdotal and other information
Lessons Learned

- Using existing data allows for lower cost of analysis and less controversy
- Review/recheck generally-accepted and locally developed data for accuracy
- Analysis of individual sites requires on-site, face-to-face assessment
- Include local leadership, management and operations SMEs on the team
- Facility condition assessments (FCA) data is effective for aiding development of sound adaptation and resilience improvement actions
Lessons Learned

- Local conditions can accelerate building system degradation and system failures, e.g., salty air, severe weather, drought, sun

- Facility configuration should be evaluated as part of any FCWA, including the location of critical equipment inside and outside a building (e.g., boilers in the basement of a building inside a flood zone)

- Key data can be gained by considering the building size, shape, orientation, landscaping, and local features
High-level Themes

• Keep it simple – It is not easy!
• Develop a common vocabulary for a shared understanding
• Make the approach DART™ (Defensible, Auditable, Repeatable and Transparent)
• Use data and analysis to drive action
• Integrate climate/severe weather plans into other enterprise, installation and local planning/plans
• Use the assessment process as a learning process
Assessing Assets for Climate-Related Severe Weather Threats to Reduce Vulnerability and Increase Resilience - A Risk-based Process

SAME
Stuttgart
Michael Bilney
Principal
Cardno Government Services
1 March 2017
michael.bilney@cardno-gs.com

“It is probable that improbable things will happen. Granted this, one might argue that what is improbable is probable.” Aristotle