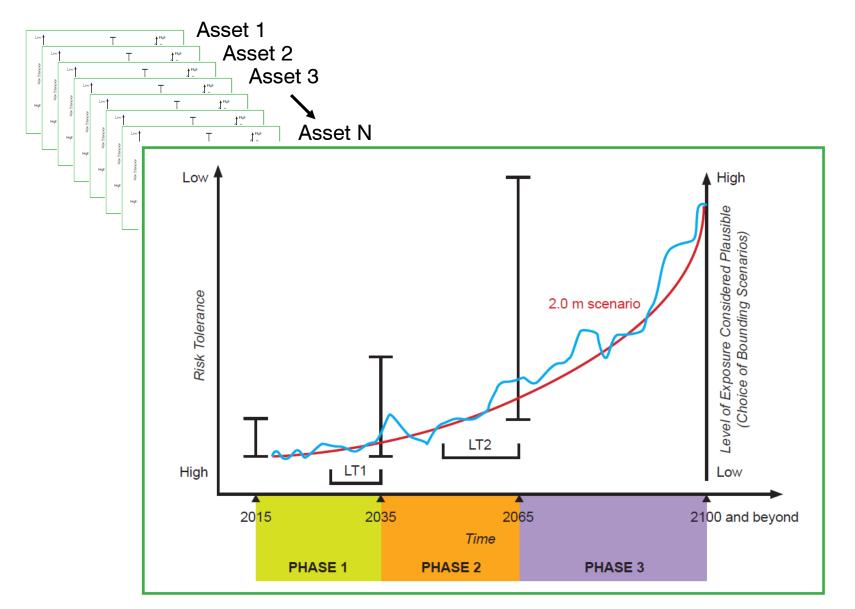
Climate Change Considerations for Resiliency Planning

Chris Mack, PE, PMP

July 20, 2017



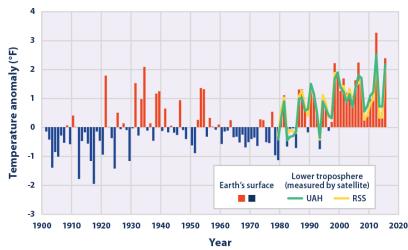
Overview

- Climate Change Overview

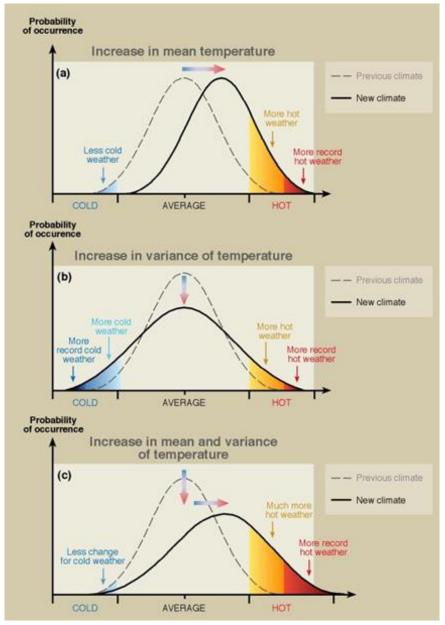
- Definitions
- Effects of climate change
- Available guidance and data
- Resilience Planning
- Sample AECOM Projects
- Questions/Comments/Discussion

Adaptive Risk Management – What is it?

AECOM

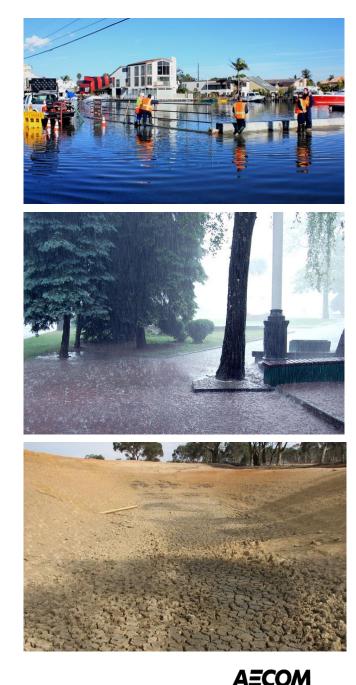

What is Climate / Climate Change?

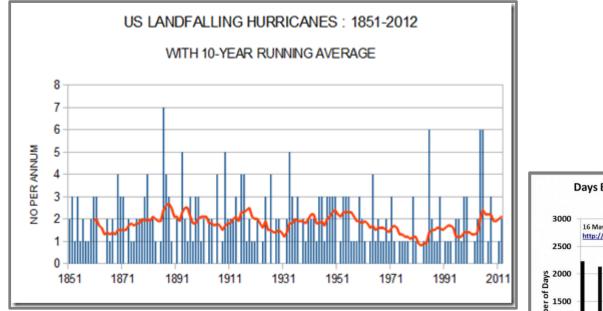
Climate

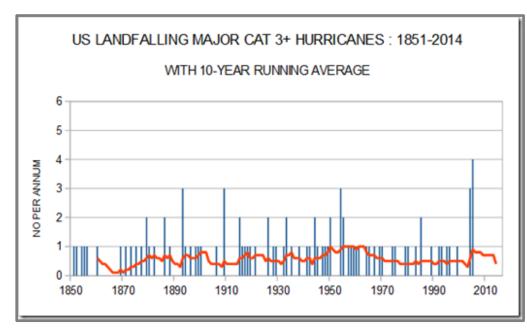

- average or statistical description of weather over long period of time (i.e., mean, variability...~30-years).
- temperature, precipitation, and wind.
- "climate is what we expect and weather is what we get".

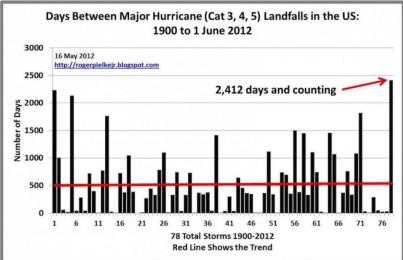
Climate Change

 Variations in average weather conditions that persist over multiple decades or longer.

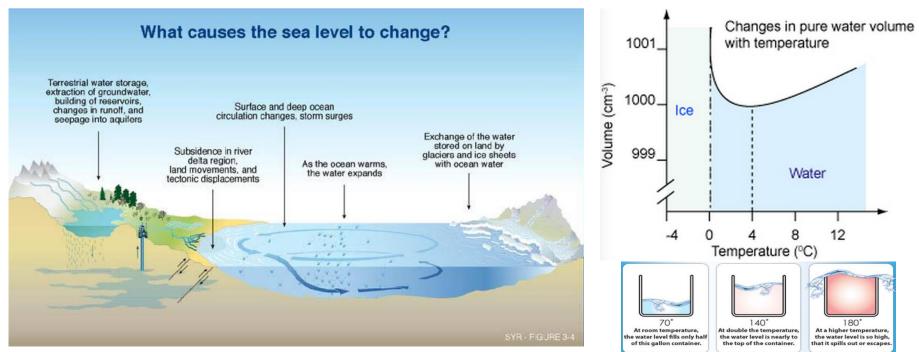

Source: US EPA - Climate Change Indicators: U.S. and Global Temperature


Source: IPCC Third Assessment Report: Climate Change 2001 (TAR) – Synthesis Report – Figure 4.1

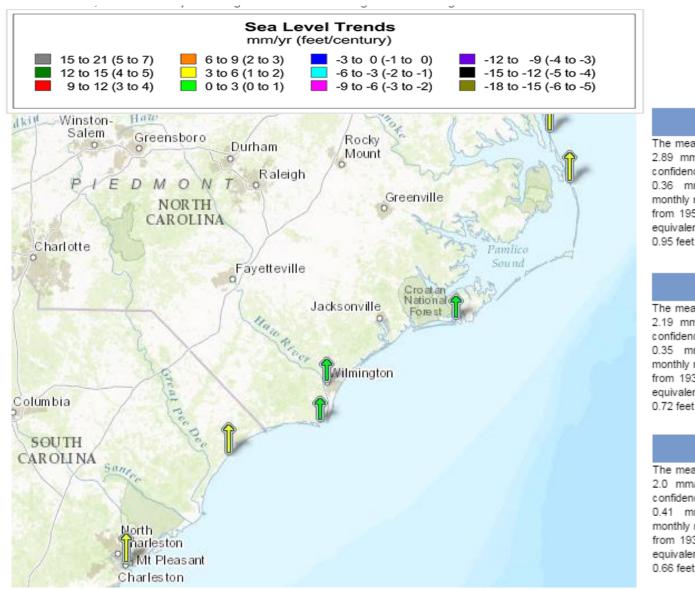

Effects of Climate Change


- Changing sea levels
 - Mainly sea level rise
- Changing storm intensity and frequency
 - Hurricanes
 - Nor'easters
- Precipitation changes
 - Heavy downpours ("rain bombs")
 - Drought
- Temperature changes
 - Heat waves and extreme heat
 - Lower low temperatures

Frequency of Landfalling Hurricanes (NOAA AOML)



Primary causes of Sea Level Rise



Source: IPCC Third Assessment Report: Climate Change 2001 (TAR) – Synthesis Report – Figure 3.4

- Melting of glaciers/ice sheets
- Thermal expansion of ocean water
- Vertical Land Movement (VLM...subsidence)

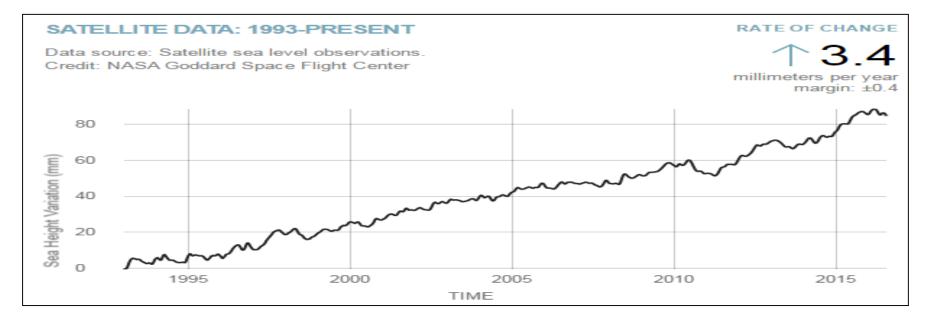
Sea Level Observed Trends (NOAA)

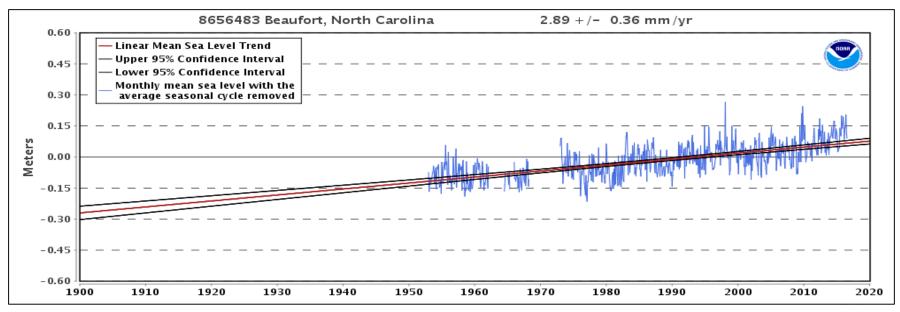
Beaufort, NC 8656483

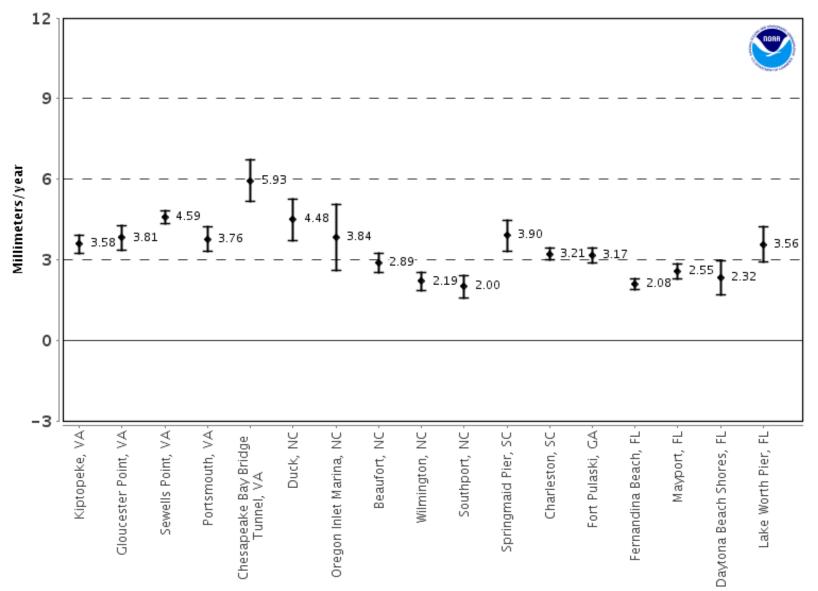
The mean sea level trend is 2.89 mm/year with a 95% confidence interval of +/-0.36 mm/year based on monthly mean sea level data from 1953 to 2015 which is equivalent to a change of 0.95 feet in 100 years.

Wilmington, NC 8658120

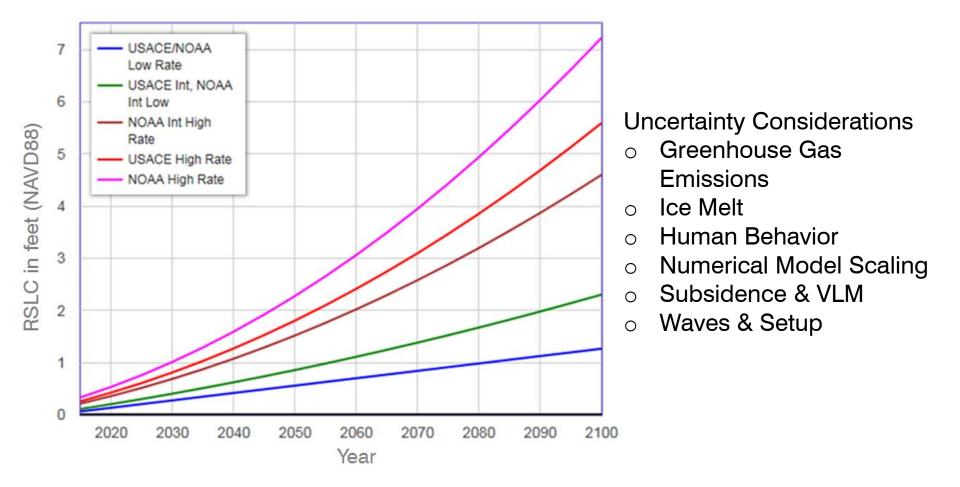
The mean sea level trend is 2.19 mm/year with a 95% confidence interval of +/-0.35 mm/year based on monthly mean sea level data from 1935 to 2015 which is equivalent to a change of 0.72 feet in 100 years.


Southport, NC 8659084

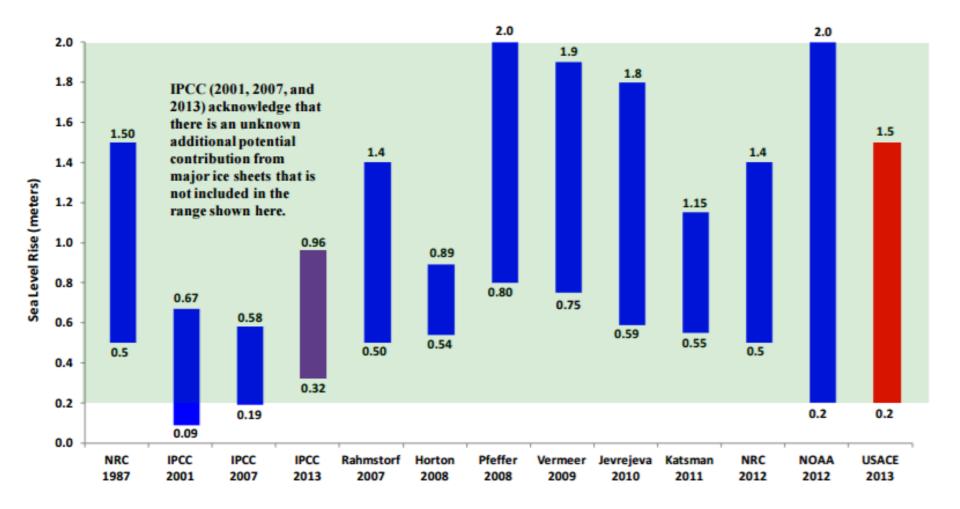

The mean sea level trend is 2.0 mm/year with a 95% confidence interval of +/-0.41 mm/year based on monthly mean sea level data from 1933 to 2008 which is equivalent to a change of 0.66 feet in 100 years.



Sea Level Observed Trends (Global & Local)



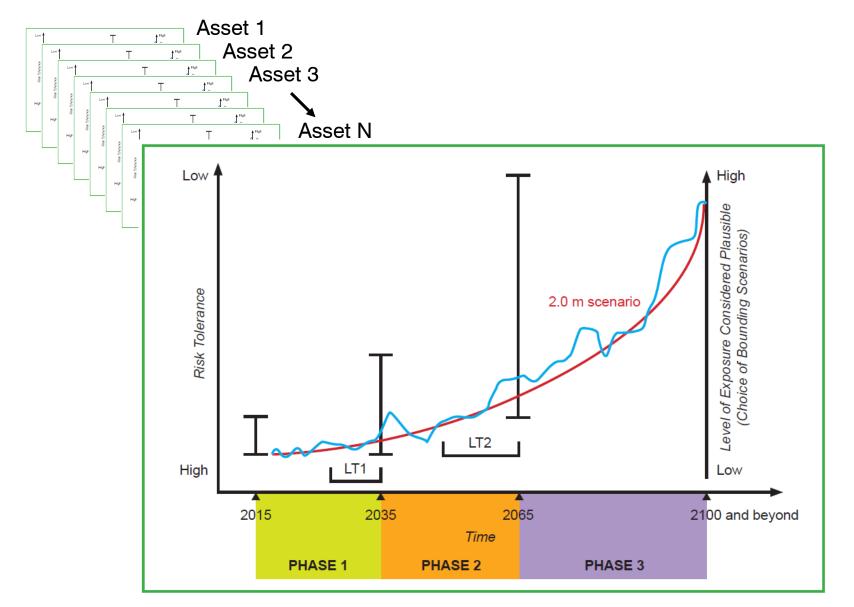
Sea Level Observed Trends (VA to FL)


AECOM

Sea Level Projections – Projections & Uncertainty?

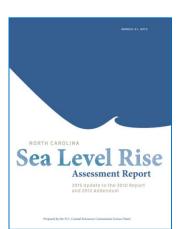
Place your Bets!

AECOM


Why/How can we leverage so many projections?

-UNCERTAINTY!

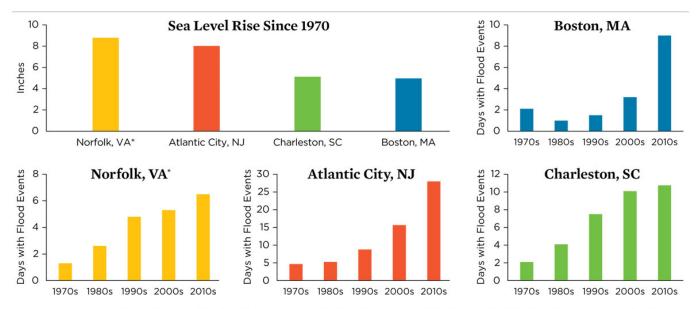
- LOW/ HISTORIC
 - Applicable when designing low risk projects
 - Easily replaceable infrastructure with short design lives
 - Not critical infrastructure/ Limited interdependencies with other infrastructure
- INTERMEDIATE
 - Applicable to projects with short –to-mid term planning horizon
- HIGH CURVE
 - High risk projects constructed in longer time frames (many decades out)
 - Critical infrastructure for services and connectivity
 - Not easily replaceable
 - Long design life


Adaptive Risk Management – Managing Uncertainty

AECOM

Sea Level Projections - NCDENR & NCDCM

	Tide Gauge Projections RSLR in 30 years (inches)		IPCC RCP 2.6 + VLM		IPCC RCP 8.5 + VLM	
Station			RSLR in 30 years (inches)		RSLR in 30 years (inches)	
	Mean	Range	Mean	Range	Mean	Range
Duck	5.4	4.4-6.4	7.1	4.8-9.4	8.1	5.5-10.6
Oregon Inlet	4.3	2.7-5.9	6.3	3.9-8.7	7.3	4.7-9.9
Beaufort	3.2	2.8-3.6	6.5	4.2-8.7	7.5	5.0-10.0
Wilmington	2.4	2.0-2.8	5.8	3.5-8.0	6.8	4.3-9.3
Southport	2.4	1.9-2.8	5.9	3.7-8.2	6.9	4.4-9.4


*Note: Projections were rounded to the nearest tenth of an inch.

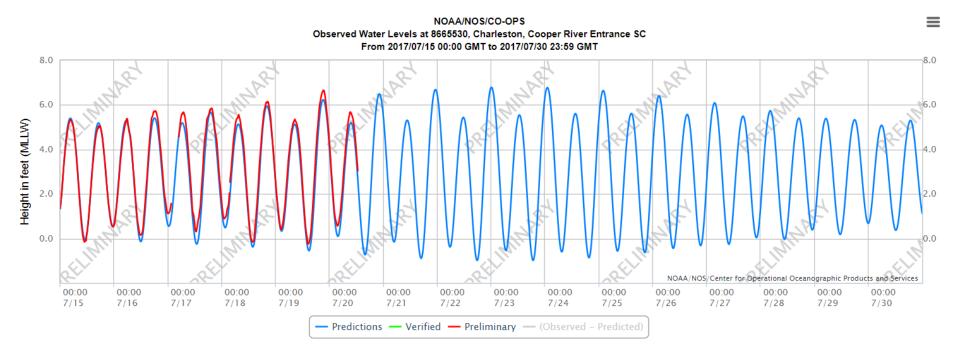
FACTORS CONTRIBUTING TO GLOBAL SEA LEVEL (GSL)					
FROM 1993-2010					
Thermal Expansion (+) or Contraction (-)	39%				
Glaciers (non Greenland and Antarctica) 27%					
Greenland and Antarctic ice sheets 21%					
Land water storage 13%					

King Tide Flooding (a.k.a., "nuisance flooding")

Local Sea Level Rise and Tidal Flooding, 1970–2012

Sea level has risen by about 3.5 inches globally—but more along the East Coast—since 1970. At Sewells Point, VA, for example, sea level has risen more than eight inches, and at Boston, about five inches. Rising seas mean that communities up and down the East and Gulf Coasts are seeing more days with tidal flooding. Charleston, SC, for example, faced just two to three days with tidal flooding a year in the 1970s. The city now averages 10 or more such days annually.

*Norfolk statistics recorded at the Sewells Point tide gauge.


© Union of Concerned Scientists 2014; www.ucsusa.org/encroachingtides

SOURCES: UCS ANALYSIS; MORALES AND ALSHEIMER 2014; NOAA TIDES AND CURRENTS 2014; NOAA TIDES AND CURRENTS 2013B.

King Tides @ Charleston, SC

DoD Sea Level Guidance (April 2016)

APRIL 20

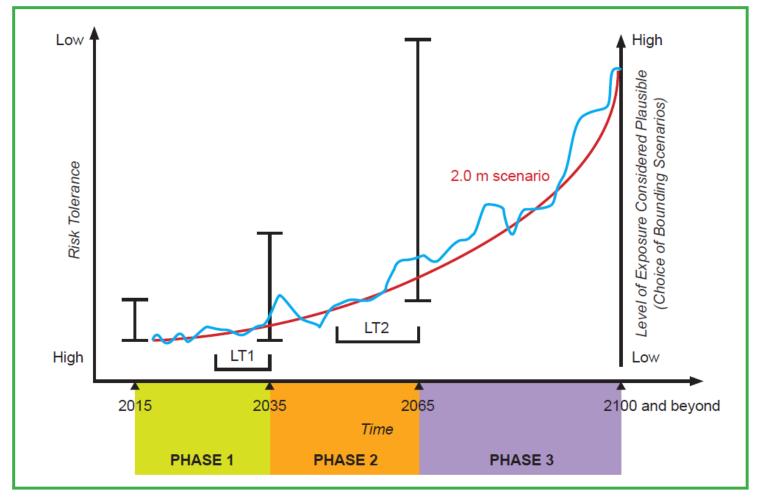
REGIONAL SEA LEVEL SCENARIOS FOR COASTAL RISK MANAGEMENT:

MANAGING THE UNCERTAINTY OF FUTURE SEA LEVEL CHANGE AND EXTREME WATER LEVELS FOR DEPARTMENT OF DEFENSE COASTAL SITES WORLDWIDE

- Region sea level and extreme water level (EWL) scenarios for 3 future time horizons (2035, 2065, and 2100) for 1,774 DoD sites worldwide.
- ...no one answer exists to address risk under future potential SLR.
-recommend an approach in which multiple plausible scenarios of the future are considered within a riskbased framing context.

Adaptive Risk Management

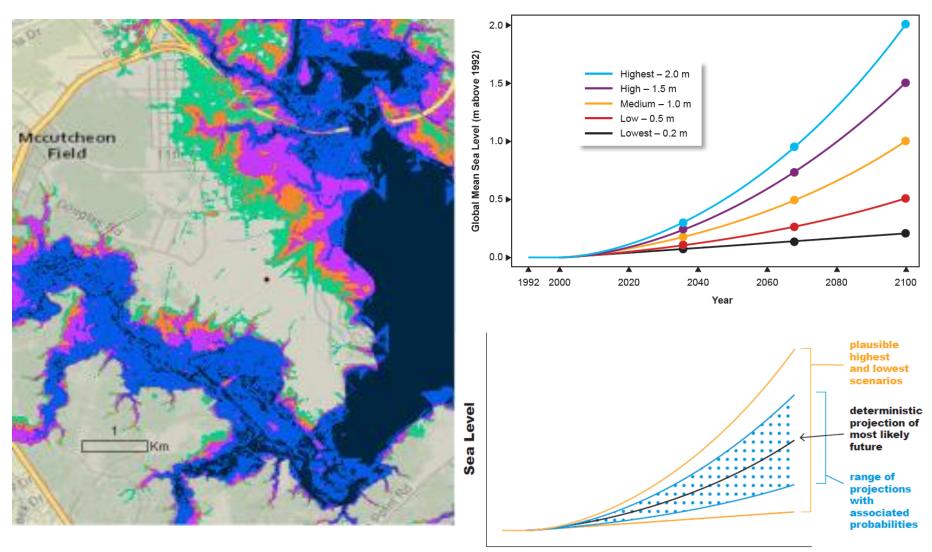
Adaptive Risk Management Strategy:


- Flexible response.
- Resource costs.
- Reversible aspects.
- Robustness of the decision.

Basic Elements of a coastal ARM Approach:

- Apply 20-50 year scenarios and solutions,
- Monitor trends (i.e., SLR, extremes),
- Update the upper bound scenarios for the longer timeframes, and
- Implement new measures accordingly.

Conceptual Diagram of an Adaptive Use of Scenarios



The key points to remember regarding ARM:

- o decision process and points are iterative,
- o choice of bounding scenarios should be robust for the **desired timeframe**,
- o should not preclude **future response options**, and
- o facilitate the **appropriate timing** of the next decision.

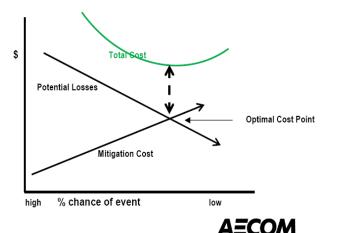
AECOM

Plausible Scenarios

Time

Risk Tolerance

• High Risk Tolerance:


- Use lower scenarios (0.2 and 0.5 meters).
- Projects with a short lifespan.
- Planning areas with flexibility to make alternative choices within the near-term.
- Low criticality.

o Low Risk Tolerance:

- Use higher scenarios (1.0, 1.5, and 2.0 meters).
- Little tolerance for risk.
- Projects or assets with a long lifespan, in which losses would be catastrophic.
- Planning areas with limited flexibility to adapt in the near or long term.
- Assets that serve critical military functions (e.g., ports and associated infrastructure).

Summary of Min-Max Values for Regional Adjustments to Global SLC & EWL Values (1,774 DoD Sites)

Global Scenario	Range of Sea-Level Change Adjustments by Scenario and Time Horizon (meters)			Range of Annual Chance Event Values (ACE) (meters)			ent
	2035	2065	2100	20% ACE	5% ACE	2% ACE	1% ACE
0.2 meters			-2.3 to 1.2		0.3 to 3.6	0.3 to 4.0	0.3 to 4.3
0.5 meters		1 (+= 0.9					
1.0 meters	-0.9 to 0.5	-1.6 to 0.8		0.2 to 3.0			
1.5 meters			-2.3 to 1.3				
2.0 meters		-1.6 to 0.9	-2.2 to 1.5				

"the primary purpose of the scenario values developed and illustrated herein is to support screening level vulnerability and impact assessments for Department of Defense (DoD) sites worldwide"

Federal Tools Relating to Sea-Level Change Depiction and Potential Impacts

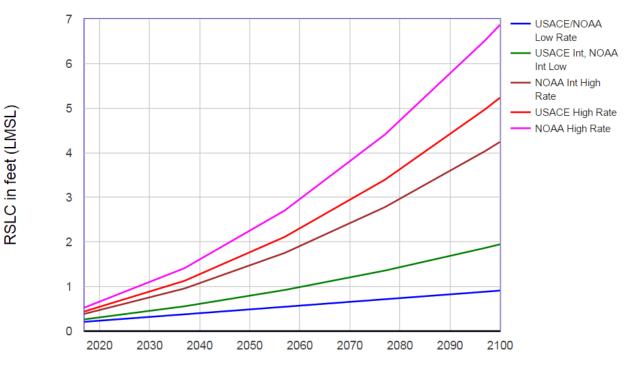
 NOAA Sea Level Rise and Coastal Flooding Impacts Viewer

- USACE Sea Level Change Calculator Tool
- **O USGS Coastal Vulnerability Index**

0 feet of Sea Level Rise (MHHW) – Base Camp

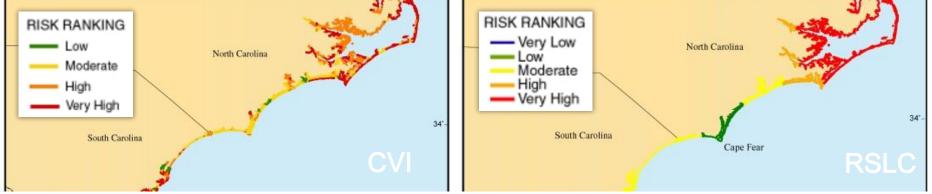
3 feet of Sea Level Rise (MHHW) – Base Camp

6 feet of Sea Level Rise (MHHW) – Base Camp



USACE Sea Level Change Calculator Tool

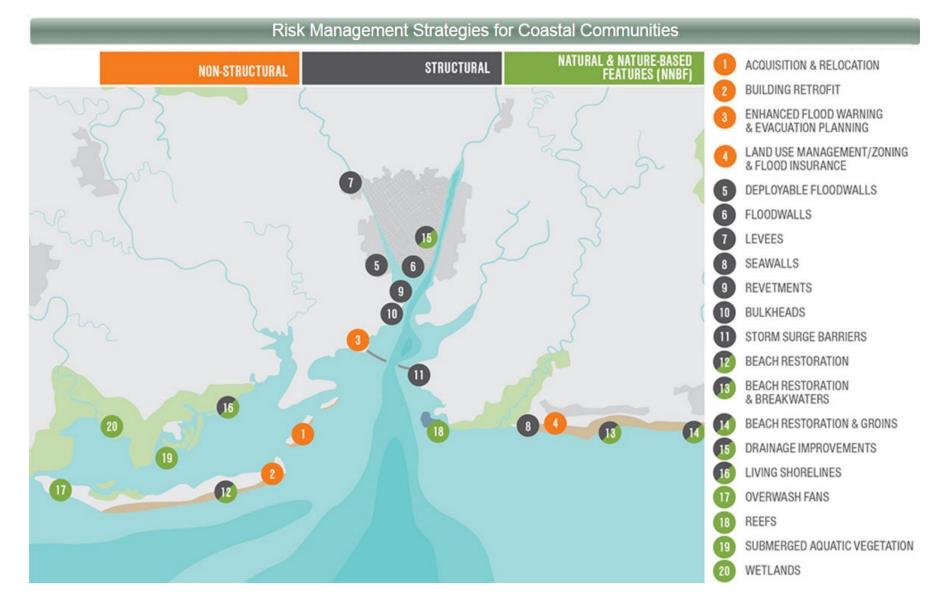
Year	USACE Low NOAA Low	USACE Int NOAA Int Low	NOAA Int High	USACE High	NOAA High
2017	0.21	0.27	0.39	0.44	0.53
2037	0.38	0.56	0.96	1.13	1.41
2057	0.55	0.92	1.76	2.11	2.71
2077	0.72	1.36	2.78	3.40	4.41
2097	0.89	1.87	4.04	4.97	6.52
2100	0.91	1.95	4.24	5.24	6.87


Relative Sea Level Change Projections - Gauge: 8656483, Beaufort, NC (05/01/2014)

ΑΞϹΟΜ

USGS Coastal Vulnerability Index

	Ranking of coastal vulnerability index					
	Very low	Low	Moderate	High	Very high	
VARIABLE	1	2	3	4	5	
Geomorphology	Rocky, cliffed coasts Fiords Fiards	Medium cliffs Indented coasts	Low cliffs Glacial drift Alluvial plains	Cobble beaches Estuary Lagoon	Barrier beaches Sand Beaches Salt marsh Mud flats Deltas Mangrove Coral reefs	
Coastal Slope (%)	> .2	.207	.0704	.04025	< .025	
Relative sea-level change (mm/yr)	< 1.8	1.8 - 2.5	2.5 - 2.95	2.95 - 3.16	> 3.16	
Shoreline erosion/ accretion (m/yr)	>2.0 Accretion	1.0 - 2.0	-1.0 - +1.0 Stable	-1.12.0	< - 2.0 Erosion	
Mean tide range (m)	> 6.0	4.1 - 6.0	2.0 - 4.0	1.0-1.9	< 1.0	
Mean wave height (m)	<.55	.5585	.85-1.05	1.05 -1.25	>1.25	
					1-001	


Resilience (USACE Perspective)

USACE Risk Management Strategies to 2100

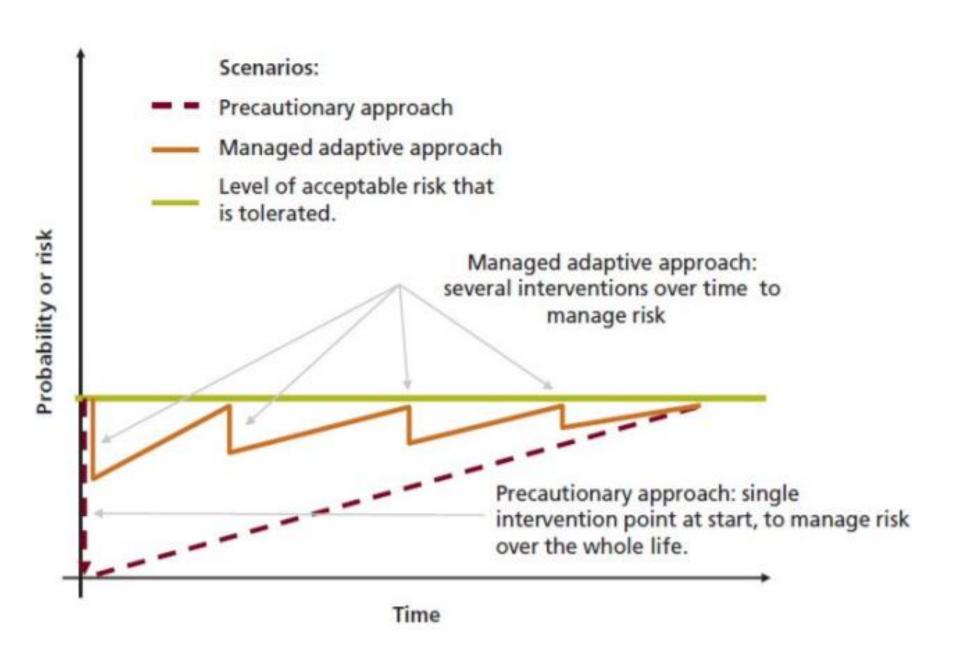
Non-structural Approaches

Floodplain Policy and Management	Floodproofing and Impact Reduction	Flood Warning and Preparedness	Relocation
	Benefits/	Processes	
Improved and controlled floodplain development Reduced	Reduced opportunity for damages Increased community	Reduced opportunity for damages Increased community	Reduced opportunity for damages No increase in flood potential
opportunity for damages	resiliency No increase in	resiliency Improved public	elsewhere Improved natural
Improved natural coast environment	flood potential elsewhere	awareness and responsibility	coast environment
	Performan	nce Factors	
Wave height Water level Storm duration	Wave height Water level Storm duration	Wave height Water level Storm duration	Wave height Water level Storm duration
Agency collaboration			

ΑΞϹΟΜ

Structural Approaches

Levees	Storm Surge Barriers	Seawalls and Revetments	Groins	Detached Breakwaters
		Benefits/Processes	S	
Surge and wave attenuation and/or dissipation Reduced flooding Reduced risk for vulnerable areas	Surge and wave attenuation Reduced salinity Intrusion	Reduced flooding Reduced wave overtopping Shoreline stabilization behind structure	Shoreline stabilization	Shoreline stabilization behind structure Wave attenuation
		Performance Facto	rs	
Levee height, crest width, and slope Wave height and period Water level	Barrier height Wave height Wave period Water level	Wave height Wave period Water level Scour protection	Groin length, height, orientation, permeability, and spacing Depth at seaward end Wave height Water level Longshore transportation rates and distribution	Breakwater height and width Breakwater permeability, proximity to shoreline, orientation, and spacing


ΑΞϹΟΜ

Natural & Nature-based Approaches

Dunes and Beaches	Vegetated Features	Oyster and Coral Reefs	Barrier Islands	Maritime Forests/Shrub Communities
		Benefits/Processes		
Breaking of offshore waves Attenuation of wave energy Slow inland water transfer	Breaking of offshore waves Attenuation of wave energy Slow inland water transfer Increased infiltration	Breaking of offshore waves Attenuation of wave energy Slow inland water transfer	Wave attenuation and/or dissipation Sediment stabilization	Wave attenuation and/or dissipation Shoreline erosion stabilization Soil retention
]	Performance Factor	s	
Berm height and width Beach slope Sediment grain size and supply Dune height, crest,	Marsh, wetland, or SAV elevation and continuity Vegetation type and density	Marsh, wetland, or SAV elevation and continuity Vegetation type and density	Marsh, wetland, or SAV elevation and continuity Vegetation type and density	Marsh, wetland, or SAV elevation and continuity Vegetation type and density
and width Presence of vegetation				

AECOM

USACE Risk, Strategy, and Project Purpose

AECOM Resilience Planning Process

Resilience

"Instead of repeated damage and continual demands for federal disaster assistance, resilient communities proactively protect themselves against hazards, build self-sufficiency, and become more sustainable" **Resilience** is the ability to adapt to changing conditions and prepare for, withstand, and rapidly recover from disruption caused by a hazard.

—Godschalk, et al., 2009

Thank You & Q/A?

Chris Mack, Coastal Program Manager AECOM Phone: (843) 302-8712 Email: <u>chris.mack@aecom.com</u>

