

Importance of an O&M Program

(or How My BMS Almost Put Me in JAIL!)

J. Woody Thompson, PE, CEM, CxA, CBCP, CPMP, REP, LEED AP

Commissioning & Energy Region Leader

10/9/19 **RS&H**

Training Objectives

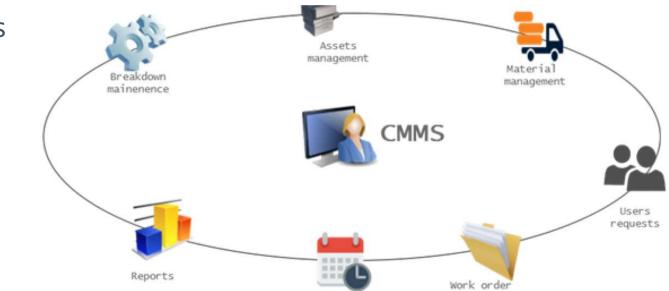
- » What & Why of O&M
- » Computerized Maintenance Management System (CMMS)
- » Types of Maintenance Programs
- » Predictive Maintenance Technologies
- » Commissioning & Retro-Commissioning
- » Metering for O&M
- » Energy/Building Management System

O&M: Definition

- » Decisions & Actions to Maintain Property & Equipment
 - Efficiency/Optimization Opportunities
 - Routine Activities
- » Operational Efficiency
 - Preventive, Predictive, & Reliability-Centered Activities
 - Monitor, Track, Trend, & Document

O&M: What Is It?

- » Most Cost-Effective Method:
 - Reliability
 - Safety
 - Energy Efficiency
- » INADEQUATE MAINTENACE PROGRAMS = #1 Energy Waste
 - Most Savings: Low Cost w/ Immediate Action
 - 5%-20% Savings w/ LITTLE Capital Investment


O&M: Why?

- » Legislative Mandates
- » Energy Budget Savings: Improved Operations
- » Improved Reputation & Confidence by Management
- » Healthy/Sustainable Facility

	0
Ц	1
	LL.

- » Needs Assessment
- » Capabilities
- » Benefits
- » Pitfalls

- » Needs Assessment
 - Track & Verify Work Orders
 - Access to Historical Information
 - Inventory Control
 - Archiving Documents: Electronic Based
 - Compliance w/ Life, Health & Safety Requirements
 - Asset Management Procedures

- » Capabilities
 - Electronic Tracking & Documentation
 - Work Orders
 - History
 - Scheduled/Unscheduled Activities
 - Training Compliance
 - Technical & Procedural Information
 - MUCH MORE

- » Benefits
 - Predictive/Proactive to Potential Problems
 - Improved Planning Improves Staff Resources
 - Improved Inventory Forecasting
 - Maintaining Optimal Equipment Performance LESS DOWNTIME!

- » Pitfalls
 - Improper Selection of CMMS Vendor
 - Inadequate Training on Use of CMMS
 - Poor Implementation of CMMS
 - Inconsistent Use of CMMS (No Commitment)

- » Reactive (>55%)
- » Preventative (31%)
- » Predictive (12%)
- » Reliability Centered (2%)

- » Reactive (>55%) Unplanned Activities
 - Advantage (Perception): Low Cost / Less Staff
 - Disadvantages (Reality):
 - Increased Cost Unplanned Downtime
 - Increased Labor Cost Overtime
 - Increased Cost Repair/Replace Equipment
 - Inefficient Use of Staff Resources

- » Preventative (31%) Time Based Activities
 - Advantages:
 - Cost effective
 - Flexibility w/ Schedule
 - Increased Life Cycle
 - Energy Savings
 - Reduced Failure
 - 12%-18% Savings Over Reactive Program

- » Preventative (31%) Time Based Activities
 - Disadvantages:
 - Catastrophic Failures Still Occur
 - Labor Intensive
 - Possible Performance of Unneeded Maintenance
 - Increased Potential for Incidental Damage

» Predictive (12%) – Need Based Activities

Advantages

- Increased Operational Life
- Preemptive Corrective Actions
- Decreased Downtime
- Decreased Costs
- Improved Worker Safety & Morale
- Energy Savings 8%-12% Over Preventive Program

» Predictive (12%) – Need Based Activities

– Disadvantages

- Increased Investment of Diagnostic Equipment
- Increased Investment in Training
- Savings Potential Not Seen by Management

 » Reliability Centered – Activities Unique to Maintenance Requirements of Individual Equipment

– Advantages:

- Eliminates Unnecessary Maintenance
- Reduced Sudden Failures
- Increased Focus on Critical Equipment
- Increased Equipment Reliability
- Focus on Root Cause Analysis

- » Reliability Centered Activities Unique to Maintenance Requirements of Individual Equipment
 - Disadvantages:
 - Significant Costs: Startup, Training, Diagnostic Equipment
 - Savings Potential Not Seen by Management

Predictive Maintenance Technologies

- » Thermography
- » Lubricant & Wear Particle Analysis
- » Ultrasonic Analysis
- » Vibration Analysis
- » Motor Analysis
- » Performance Trending

Technologies	Applications	Pumps	Electric Motors	Diesel Generators	Condensers	Heavy Equipment/ Cranes	Circuit Breakers	Valves	Heat Exchangers	Electrical Systems	Transformers	Tanks, Piping
Vibration Monitoring/Analysis		Х	Х	Х		Х						
Lubricant, Fuel Analysis		Х	Х	Х		Х					Х	
Wear Particle Analysis		Х	Х	Х		Х						
Bearing, Temperature/Analysis		Х	X	Х		Х						
Performance Monitoring		Х	Х	Х	X				Х		Х	
Ultrasonic Noise Detection		Х	Х	Х	Х			Х	Х		Х	
Ultrasonic Flow		Х			Х			Х	Х			
Infrared Thermography		Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	
Non-destructive Testing (Thickness)					Х				Х			Х
Visual Inspection		Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х
Insulation Resistance			Х	Х			Х			Х	Х	
Motor Current Signature Analysis			Х									
Motor Circuit Analysis			Х				Х			Х		
Polarization Index			Х	Х						Х		
Electrical Monitoring										Х	Х	

Commissioning / Retro-Commissioning

- » **Commissioning** is performed specifically to ensure that the finished facility operates in accordance with the owner's documented project requirements (OPR) and the construction documents (BOD).
- » Retro-Commissioning is the commissioning process as applied to an existing facility that has never been commissioned. Focus is on building performance and how to improve utility/energy consumption.
- » **Re-Commissioning** is the commissioning process as applied to an existing building that had been commissioned but no longer meets owner's current operational need.

Retro-Commissioning Process

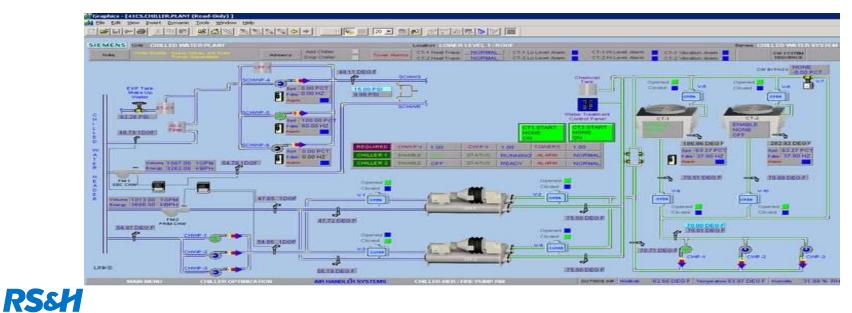
Process applied to a building that was **<u>NEVER COMMISSIONED</u>**.

The retro-commissioning process involves activities that are integrated into every phase of the project . . .

NOT A MAINTENANCE CONTRACT!

NOT JUST AN ENERGY STUDY!

- » One-Time/Spot Measurement
- » Run-Time Measurement
- » Short-Term Monitoring
- » Long-Term Monitoring


- » One-Time/Spot Measurement "Baseline" Activity
 - Advantages
 - Lowest Cost
 - Ease of Use
 - Non-Intrusive
 - Fast Results
 - Advantages
 - Disadvantages
 - Low Accuracy
 - Limited Application
 - Measures Single Operating Parameter

- » Run-Time Measurement
 - Advantages
 - Low Cost
 - Ease of Use
 - Non-Intrusive
 - Constant-Load Devices
 - Disadvantages
 - Limited Application
 - Measures Single Operating Parameter
 - Additional Calculations/Assumptions

- » Short-Term Monitoring
 - Advantages
 - Mid-Level Cost
 - Quantify Magnitude & Duration
 - Relatively Fast Results
 - Disadvantages
 - Mid-Level Accuracy
 - Limited Application
 - More Difficult to Install/Monitor

- » Long-Term Monitoring
 - Advantages
 - Highest Accuracy
 - Quantify Magnitude & Duration
 - Captures Most Variance
 - Disadvantages
 - High Cost
 - Most Difficult to Install/Monitor
 - Time Duration for Results

- » HVAC Scheduling, Temperature/Pressure Setpoints
- » HVAC Tune-Up & Maintenance

- » HVAC Scheduling, Temperature/Pressure Setpoints, Alarms
 - Direct Digital Control (DDC) Optimal Start/Stop
 - DDC Holiday Scheduling
 - Temperature Setpoints
 - Pressure Setpoints
 - Understanding Alarms

- » HVAC Tune-Up & Maintenance for DDC Reliability
 - Valves
 - Sensor Calibration
 - Belt-Driven System
 - System Overrides
 - Simultaneous Heating and Cooling

- » How to Stay Out of JAIL!
 - Federal Courthouse
 - DDC Shortfalls
 - Software Upgrades
 - Overrides
 - Software Upgrades
 - Training

Description	Comments	Maintenance Frequency						
		Daily	Weekly	Semi- Annually	Annually			
Overall visual inspection	Complete overall visual inspection to be sure all equipment is operating and safety systems are in place	Х						
Verify control schedules	Verify in control software that schedules are accurate for season, occupancy, etc.	х						
Verify setpoints	Verify in control software that setpoints are accurate for season, occupancy, etc.	х						
Time clocks	Reset after every power outage	Х						
Check all gauges	Check all gauges to make sure readings are as expected		х					
Control tubing (pneumatic system)	Check all control tubing for leaks		х					
Check outside air volumes	Calculated the amount of outside air introduced and compare to requirements		х					
Check setpoints	Check setpoints and review rational for setting		Х					
Check schedules	Check schedules and review rational for setting		Х					
Check deadbands	Assure that all deadbands are accurate and the only simultaneous heating and cooling is by design		х					
Check sensors	Conduct thorough check of all sensors – temperature, pressure, humidity, flow, etc. – for expected values			х				
Time clocks	Check for accuracy and clean			Х				
Calibrate sensors	Calibrate all sensors: temperature, pressure, humidity, flow, etc.				Х			

10 Steps for Operational Efficiency

- » 1. Increase Management Awareness (ongoing)
- » 2. Track O&M Activities (ongoing)
- » 3. Identify Your "Problem Children"
- » 4. Address at Least One
- » 5. Look for Operational Efficiencies

10 Steps for Operational Efficiency

- » 6. Diagnostic/Forensic Analysis
- » 7. Trend Data
- » 8. Create "Operational Efficiency" Project
- » 9. Highlight Your Success (esp. to Management)
- » 10. Find Next Optimization Opportunity (Go to Step 3)

FEDERAL ENERGY MANAGEMENT PROGRAM

Energy Efficiency & Renewable Energy

U.S. DEPARTMENT OF

Release 3.0

Operations & Maintenance Best Practices

A Guide to Achieving Operational Efficiency

August 2010

Open Discussion & Questions

THANK YOU!

RS&H

J. Woody Thompson woody.thompson@rsandh.com 210-301-4819