

Cement Stabilized Subgrade

Qiang Li, PhD, PE Infrastructure Solutions Engineer

Qiang.Li@Cemex.com

(339)502-0312

PROBLEMATIC SOILS

- 1. Expansive
- 2. Low Strength
- 3. Poor Workability

What Are the Options / Solutions for Poor Subgrade Soils?

- 1. Excavate/replace with select fill
 - Aggregate
 - Soil
- 2. Increase the base / pavement /foundation slab thickness
- 3. Contain using fabrics or other geotextiles
- 4. Stabilize soils with a calcium-based additive such as portland cement

Poor Workability

Cost Time Sustainable

HOW TO MITIGATE SOIL MOVEMENT UNDER A PAVEMENT?

Methods to Mitigate Swell

- 1. Reduce moisture susceptibility of soil itself
 - Soil Stabilization
- 2. Reduce moisture infiltration to natural soils
 - Stabilize deep enough
 - Moisture barriers (horizontal or vertical)
 - Moisture treat below stabilization

Methods That **Dont** Mitigate Swell

- 1. Aggregate base
- 2. Concrete or asphalt paving
- 3. 1 inch of concrete more
- 4. Steel in concrete
- 5. Moisture treat only
- 6. Geotextiles

- 1. Provide an adequate depth of cover to limit the potential vertical rise
 - Arterial / Collector PVR <2.0
 - Local / Residential PVR <3.0
- 2. Provide a targeted Effective PI
 - Arterial / Collector Pl_{eff} <30
 - Local / Residential Pl_{eff} <40

SOIL STABILIZATION IS THE MIXING OF ADDITIVES INTO SOIL TO IMPROVE PROPERTIES FOR CONSTRUCTION & PERFORMANCE

1. What is it?

2. Why Use It?

Mixing calcium based additives into the soil to cause a chemical reaction which results in improved workability of the soil for construction purposes

- 1. Meet project deadlines, speed up construction
- 2. Get out of the "Mud" working platform
- 3. Create select fill from poor soils
- 4. Reduce shrink / swell, plasticity
- 5. Increase soil strength
- 6. Sustainable reduce soil removal
- 7. Reduce cost
- 8. Dry soils

HOW SOIL STABILIZATION WORKS (Chemistry)

HOW SOIL STABILIZATION WORKS (Physical)

Untreated clays have a layered particle structure. The structure can trap water between layers, causing volume and density changes Unstabilized Clay Particles

Calcium atoms (from cement or lime) alter clay structure from flat – layered orientation to random edge to face orientation producing a granular type soil (lon exchange)

Clay Particles after flocculation/agglomeration

The hydrated cement locks the particle together providing a permanent bound structure

(Lime can do this at high percentages)

Clay Particles after Hydration

TERMINALOGY OF CEMENT TREATED MATERIALS

	Cement Modified Soil (CMS)	Cement Stabilized Subgrade (CSS)	Cement-Treated Base (CTB)	Full-Depth Reclamation (FDR)
Purpose:	Promotes soil drying Provides a working platform Permanent soil modification (does not leach)	Provides all of the benefits of CMS and: Provides a Structural Layer with increased strength Increased bearing capacity for layers above	Provides strong, frost / Moisture resistant base layer for asphalt or concrete pavements Increased Erosion Resistance	Reuse Existing Materials Increase Base structural capacity Frost / moisture resistant layer Increased Erosion Resistance
Materials:	Primarily fine grained soils 2-3% cement	Primarily fine grained soils 3-8% cement	Primarily coarse grained, Virgin, manufactured materials. 3-6% cement	Pulverized asphalt blended with existing pavement base, subbase, and subgrade 2-6% cement added
Material Properties	Reduced plasticity and shrink/swell volume change characteristics Reduced moisture susceptibility No Strength increase	100-300 psi compressive strength (7 days)	200-600 psi compressive strength (7 days)	200-600 psi compressive strength (7 days)
Construction Practices	Minimum 95% densityMixed in place	Minimum 95% densityMixed in place	 Minimum 95-98% of maximum density Mixed in place or plant mixed 	 Minimum 95-98% of maximum density Typically mixed in place

Field Sampling & Mix Design

LET

21

GEOTECHNICAL INVESTIGATION

- Performed early in the design process
- Initial Desktop study (Soil survey publications incl. soil types & properties)
- Review of record drawings, surveys, & previous reports
- Site visit
- Field samples
- Field Testing
- Laboratory Testing
- Geotechnical Report

USE PROPER SAMPLING METHOD DEPENDING ON THE INTENDED PURPOSE OF INVESTIGATION AND TYPE OF SAMPLES NEEDED

Test Pits Bulk Samples

Core Small, Intact Sample

Auger Small, Unbound Sample

DCP In-situ Strength

LAB TESTING SHOULD BE DONE ON EVERY SOIL TYPE TO DEVELOP ADDITIVE RECOMMENDATIONS Don't Assume It Will Work

SOME AGENCIES HAVE GUIDELINES FOR ADDITIVE SELECTION FOR SOIL STABILIZATION

Should Plasticity Index be the sole factor for selecting additive type?

2 What other factors should be considered when selecting additive type?

SOIL STABILIZATION IMPROVES THE ENGINEERING PROPERTIES OF THE SOIL

What are your objectives when selecting additives for soil stabilization?

What is your design criteria for additive selection for soil stabilization?

Additive Based

CEMENT BASED ADDITIVES ARE OPTIONS TO STABILIZE ALL SOIL TYPES

Reasons for Use

Soil	AASHTO	Cement Content	Plasticity	Shrinkage
No.	Classification	(percent)	Index	Limit
		None	30	13
1	A-7-6 (20)	3	13	24
		5	12	30
		None	17	13
2	A-6 (8)	3	2	26
	1884 () - 1	5	1	28
		None	20	10
4	A-6 (9)	3	9	21
		5	5	25
		None	36	13
7	A-7-6 (18)	3	21	26
		5	17	32
		None	43	14
10	A-7-6 (20)	3	24	24
	50 - 5 0	5	16	31

Table 2.4 – Effect of Cement Treatment on Properties of Clay Soils

*PCA publication Cement Modification of Clay Soils, RD002

ATTERBERG LIMITS AND SIEVE ANALYSIS

Figure 2.1 – Plastic Index of Soils after Being Stabilized (Scullion, et al, 2005)

Moisture-Density Relationship

ASTM D558

FREE SWELL IS A VERY GOOD TEST TO EVALUATE ADDITIVE PERFORMANCE

- Prepare specimen using Proctor Method
- Cure for 2 days in sealed bag, room temperature
- Place in oven for 4 hours
- Set on Porous stone with water to bottom
- Measure diameter and height every day for 5 days
- Plot % Swell over time

Days

STRENGTH MEASUREMENTS CAN PROVIDE PERFORMANCE MEASUREMENTS TO DETERMINE CEMENT CONTENT

ASTM D1633 Standard Test Method for Compressive Strength of Molded Soil-Cement Cylinders

- Prepare specimen using Proctor Method
- Cure for 7 days in sealed bag, room temperature
- Test for compressive strength at 7 days
- After free swell test, measure compressive strength of "wet specimen"

SULFATE TESTING SHOULD BE CONDUCTED IF POTENTIAL EXISTS

- 0.00% to 0.30% Sulfate Levels Too Low to be of Concern
- 0.31% to 0.50% Sulfate Levels of Moderate Risk
- 0.51% to 0.80% Sulfate Levels of Moderate to High Risk
- 0.81% and up Sulfate Levels of High and Unacceptable Risk

- Calcium Based Stabilizers will react with Sulfates forming ettringite causing significant swell
- Some measures can be taken to use calcium based stabilizers such as double treatments, this will cause the reaction to take place prior to final compaction

Fort Worth Soil (PI = 42)

CEMENT STABILIZATION CAN SAVE TIME & MONEY

(1) Assumes 3 days of mellowing for lime, although recommend range is 1 to 7 days by National Lime Association - 23 -

MIX DESIGN PROCESS REVIEW

TYPICALLY, SOIL STABILIZATION PLANS USE LIME

RESEARCH INDICATES LIME TREATMENT MAY BE TEMPORARY Reducing Long Term Durability

1995 City of Garland, TX Pavement Study ⁽¹⁾

Study of failed pavement sections on Taylor Clay soils (PI = 39)

- Originally treated with 7% lime
- Nearly complete loss of lime modification effects
- Average moisture content 10.6% above optimum

 Study of Life Extension & Rehabilitation of Residential Streets and Alleys for City of Garland, Texas, J.F. Polma, F.A. Polma, M.B. Addison, D. Zollinger, N. Buch, October 1995 2005 City of Frisco, TX Pavement Study ⁽²⁾

Study of cracked pavement sections on Eagle Ford Shale (PI = 30 to 71)

- Originally treated with 8% lime (2-5 yrs old)
- Nearly complete loss of lime modification effects
- Report Conclusion " Lime treatment is only temporary, results indicate shortly after construction, soils revert to natural state"

Location	Lime Treated	Current PI	Current pH	% Borings lime Detected
Teel Parkway	8% lime 6" Deep	71	10.4	50%
The Lakeside at Star Ranch	8% lime 6" Deep	43	-	0%
The Trails, Phase 6	8% lime 6" Deep	30	10.4, 8.6	50%

2) Subgrade and Pavement Study: Existing Distressed streets Investigation and Methods for Street Rehabilitation, Frisco Texas, Michael Batuna, CTL Thompson Texas, LLC

Projects and Test Results

LARGE GROCERY DISTRIBUTION CENTER

TESTING FOR DISTRIBUTION CENTER PROVES CEMENT WORKS AS WELL AS LIME

Sample	Description	Liquid Limit	Plastic Limit	Plasticity Index	Plasticity Index (5% Cement)
TP-1	Tan & Gray Fat Clay	51	20	31	5
TP-2	Brown Fat Clay	57	20	37	12
TP-3	Brown Fat Clay	59	23	36	6
TP-4	Tan Fat Clay	57	21	36	12

Construction of Cement-Modified Soils

- 1. Proof Roll to identify deep weak spots
- 2. Pulverize the roadbed materials
- 3. Blade to desired roadway template
- 4. Spread cement
- 5. Mix all materials directly on the roadbed
- 6. Bring to optimum moisture content
- 7. Compact to 95% to 98% standard Proctor
- 8. Shape the roadway to Plan requirements

PROOF ROLLING WILL IDENTIFY WEAK SPOTS THAT MAY REQUIRE

VARIOUS OPTIONS EXIST FOR CEMENT SPREADING

Dry Powder

- Lowest Cost
- Dusty

Dustless Dry Powder

Slurry Cement

- Solves dust problem
- Increased Cost

Spreader Trucks

CONSTRUCTION PROCESS – SPREAD RATES

	20 lbs/yd ² 30 lb				s/yď²		40 lbs/yd ²				50 lbs/yd ²				60 lbs/yd ²				70 lbs/yd ²				80 lbs/yd ²					
	Depth of Stabilization			Depth of Stabilization				Depth of Stabilization				Depth of Stabilization				Depth of Stabilization			Depth of Stabilization				Depth of Stabilization					
	(in.)				(in.)				(in.)				(in.)				(in.)				(in.)				(in.)			
Unit Weight of Soil																												
(pcf)	6	8	10	12	6	8	10	12	6	8	10	12	6	8	10	12	6	8	10	12	6	8	10	12	6	8	10	12
90	5%	4%	3%	3%	7%	6%	4%	4%	10%	7%	6%	5%	12%	9%	7%	6%	15%	11%	9%	7%	17%	13%	10%	9%	20%	15%	12%	10%
100	4%	3%	3%	2%	7%	5%	4%	3%	9%	7%	5%	4%	11%	8%	7%	6%	13%	10%	8%	7%	16%	12%	9%	8%	18%	13%	11%	9%
110	4%	3%	2%	2%	6%	5%	4%	3%	8%	6%	5%	4%	10%	8%	6%	5%	12%	9%	7%	6%	14%	11%	9%	7%	16%	12%	10%	8%
120	4%	3%	2%	2%	6%	4%	3%	3%	7%	6%	4%	4%	9%	7%	6%	5%	11%	8%	7%	6%	13%	10%	8%	7%	15%	11%	9%	7%
130	3%	3%	2%	2%	5%	4%	3%	3%	7%	5%	4%	3%	9%	6%	5%	4%	10%	8%	6%	5%	12%	9%	7%	6%	14%	10%	8%	7%
140	3%	2%	2%	2%	5%	4%	3%	2%	6%	5%	4%	3%	8%	6%	5%	4%	10%	7%	6%	5%	11%	8%	7%	6%	13%	10%	8%	6%

- % Cement Based on Dry Weight of Soil to be treated
- Calculate the Dry Weight of Soil to be Tested: Length x Width x Depth x Unit Weight of Soil
- Spread Rate Calculation: (Dry Weight of Soil to be treated x % Cement) / Area to be treated

CONSTRUCTION PROCESS – MIX

CONSTRUCTION PROCESS - COMPACTION

After placement and mixing, water is added (if dry mix) and the mixture is compacted with traditional compaction equipment and subsequently proof-rolled. Typically, compaction must be completed within 2-4 hours of cement mixing into soil

CONSTRUCTION PROCESS – SHAPE TO FINAL GRADE

After placement and mixing & compaction, Blades are used to shape the area to the final grade. Curing can be accomplished with water, tack coat / emulsion as appropriate

FIELD TESTING REQUIREMENTS

- Density: > 95% of Standard Proctor
- Thickness
- Stiffness Measurement of in-place structural layer

Secondary

- Stability / Proof Roll Subgrade must be stable prior to placement of next pavement course
- Cement Spread Rate

QUESTIONS?

Qiang Li, Ph.D., P.E. CEMEX, Inc Paving Solutions Engineer Qiang.Li@cemex.com 339.502.0312

